• 제목/요약/키워드: bionics

검색결과 128건 처리시간 0.043초

Scanning Probe Microscopy for Biological Samples

  • Kim, Jong-Min;Chang, Sang-Mok;Muramatsu, Hiroshi
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2005년도 국제학술심포지움 The 44th Annual Meeting of Korean Society for Life Science
    • /
    • pp.41-46
    • /
    • 2005
  • PDF

골절방지 시스템을 위한 낙상 패턴에 관한 기초 연구 (A Basic Study on Fall Patterns for Fracture Prevention System)

  • 김성현;김경;정성환;김기범;권대규;홍철운;김남균
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1925-1928
    • /
    • 2005
  • In recent years, the importance of the characterization of fall for a fracture prevention system keeps increasing since fracture from a fall can lead to serious health problems. Fall is one of the major sources which increase morbidity in elderly people. In terms of the cost and the influence to the quality of life, the most serious injury with hip fractures is caused by falls. The traditional methods in characterizing fall patterns have been mainly by the epidemiological surveys. With surveys, the exact data of fall patterns can not been acquired. In this paper, we measured and analyzed with the parameters related to fall pattern such as velocities and accelerations during the motion of falls using 3D motion capture program. We acquired the parameters of the fall pattern of intentional and unexpected fall. The result showed that the variation of velocity and acceleration during fall was very important in characterizing fall pattern, which of vital importance for the development of a fracture prevention system and for the safety of the elderly

  • PDF

ZigBee를 이용한 뇌졸중 치료용 무선 전기 자극기 개발 (Development of Wireless Neuro-Modulation System for Stroke Recovery Using ZigBee Technology)

  • 김국화;유문호;신용일;김형일;김남균;양윤석
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.153-161
    • /
    • 2007
  • Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).

A New Training System for Improving Postural Balance Using a Tilting Bed

  • Yu, Chang-Ho;Kwon, Tae-Kyu;Ryu, Mun-Ho;Kim, Nam-Gyun
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.117-126
    • /
    • 2007
  • In this paper, we propose an early rehabilitation training system for the improvement of postural balance with multi-modality on a tilting bed. The integration of the visual, somatosensory and vestibular functions is significant to for maintaining the postural control of the human body. However, conventional rehabilitation systems do not provide multi-modality to trainees. We analyzed the characterization of postural control at different tilt angles of an early rehabilitation training system, which consists of a tilting bed, a visual feedback, a computer interface, a computer, and a force plate. The software that we developed for the system consists of the training programs and the analysis programs. To evaluate the characterization of postural control, we conducted the first evaluation before the beginning of the training. In the following four weeks, 12 healthy young and 5 healthy elderly subjects were trained to improve postural control using the training programs with the tilting bed. After four weeks of training, we conducted the second evaluation. The analysis programs assess (center of pressure) COP moving time, COP maintaining time, and mean absolute deviation of the trace before and after training at different tilt angles on the bed. After 4 weeks, the COP moving time was reduced, the COP maintaining time was lengthened, and the mean absolute deviation of the trace was lowered through the repeated use of vertical, horizontal, dynamic circle movement training programs. These results show that this system improves postural balance and could be applied to clinical use as an effective training system.

Improvement of Equilibrium Sensory of the Elderly Using A Virtual Bicycle Training System

  • Jeong, Sung-Hwan;Piao, Yong-Jun;Chong, Woo-Suk;Kim, Young-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2464-2467
    • /
    • 2005
  • The purpose of this study was to explore the effectives of a virtual bicycle system in improving the ability of equilibrium sense of normal healthy adults. Experiments were performed to find the factors related to the training of equilibrium sense. The subjects consisted of young and elderly people and the group of young people was compared against the group of elderly people. We investigated three different running modes of virtual bicycle system with two successive sets in total. W measured the parameters related to the running time, the velocity, the weight movement, the degree of the deviation from the road, and the location of the center of pressure (COP). The results showed that the running capability of the elderly became much better after repeated training. In addition, it was found out that the ability to control postural balance and the capability of equilibrium sensory were improved with the presentation of the visual feedback information of the distribution of weight. We also found that the running time and the running velocity reduced when there was no visual feedback information. From the results, our newly developed bicycle system seems to be effective in the diagnosis of equilibrium sense as well as in the improvement of the sense of sight, and vestibular function of the elderly in the field of rehabilitation training.

  • PDF

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Human Spatial Cognition Using Visual and Auditory Stimulation

  • Yu, Mi;Piao, Yong-Jun;Kim, Yong-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.41-45
    • /
    • 2006
  • This paper deals with human spatial cognition using visual and auditory stimulation. More specially, this investigation is to observe the relationship between the head and the eye motor system for the localization of visual target direction in space and to try to describe what is the role of right-side versus left-side pinna. In the experiment of visual stimulation, nineteen red LEDs (Luminescent Diodes, Brightness: $210\;cd/^2$) arrayed in the horizontal plane of the surrounding panel are used. Here the LEDs are located 10 degrees apart from each other. Physiological parameters such as EOG (Electro-Oculography), head movement, and their synergic control are measured by BIOPAC system and 3SPACE FASTRAK. In the experiment of auditory stimulation, one side of the pinna function was distorted intentionally by inserting a short tube in the ear canal. The localization error caused by right and left side pinna distortion was investigated as well. Since a laser pointer showed much less error (0.5%) in localizing target position than FASTRAK (30%) that has been generally used, a laser pointer was used for the pointing task. It was found that harmonic components were not essential for auditory target localization. However, non-harmonic nearby frequency components was found to be more important in localizing the target direction of sound. We have found that the right pinna carries out one of the most important functions in localizing target direction and pure tone with only one frequency component is confusing to be localized. It was also found that the latency time is shorter in self moved tracking (SMT) than eye alone tracking (EAT) and eye hand tracking (EHT). These results can be used in further study on the characterization of human spatial cognition.

압전 재료의 탄성표면파 특성과 단백질의 고정화 (Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization)

  • 정우석;홍철운;김기범
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.166-171
    • /
    • 2006
  • 본 연구에서는 전기적 결합 계수가 큰 PMN-PT 압전 재료를 사용하여 탄성표면파를 발진시켜 단백질을 검출할 수 있는 새로운 바이오센서로써 이용 가능성을 확인하고자 시도하였다. 실험결과 PMN-PT 압전 재료의 중심 주파수 필터링은 LT 압전 재료보다 우수하였지만, 만족할만한 결과를 얻을 수는 없었다. 또한, 본 연구에서는 위암을 일으키는 mismatched DNA를 검출하기 위한 방법을 개발하고자 하였다. 그 결과 EDC 용액을 사용하여 NTA에 MutS를 고정화 하였다. 그러나 Ni(니켈)을 사용하여 MutS를 고정화하여 mismatched DNA를 측정하는 것이 더 효과적인 방법이라 판단된다.