• 제목/요약/키워드: bionics

검색결과 128건 처리시간 0.026초

Studies on the Fall Patterns for the Development of a Fracture Prevention System

  • Kim, Seong-Hyun;Kim, Gi-Beum;Kim, Young-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2451-2454
    • /
    • 2005
  • In recent years, the importance of the characterization of fall for a fracture prevention system keeps increasing since fracture from a fall can lead to serious health problems. Fall is one of the major sources which increase morbidity in elderly people. In terms of the cost and the influence to the quality of life, the most serious injury with hip fractures is caused by falls. The traditional methods in characterizing fall patterns have been mainly by the epidemiological surveys. With surveys, the exact data of fall patterns can not been acquired. In this paper, we measured and analyzed with the parameters related to fall pattern such as velocities and accelerations during the motion of falls using 3D motion capture program. We acquired the parameters of the fall pattern of intentional and unexpected fall. The result showed that the variation of velocity and acceleration during fall was very important in characterizing fall pattern, which of vital importance for the development of a fracture prevention system and for the safety of the elderly.

  • PDF

플레이트의 소성변형 과정이 재건술에서 플레이트 안정성에 미치는 영향 (On the Stability of the Permanently Bent Mini-plate in Reconstructive Surgery)

  • 박시명;이득희;노건우
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.234-241
    • /
    • 2016
  • Conventional bent plate used in mandibular reconstruction surgery needs safety verification since its mechanical properties are changed due to the plastic deformation during the bending process. In this study we investigate stability of the plastically deformed plate and the plate with the same shape without plastic deformation through the finite element analysis(FEA). First we simulate the process of plate bending to fit the defect in patient. Then, the other plate is modelled to represent a customized plate with the same shape of the plastically deformed one, but without any residual stresses from plastic deformation. After binding these plates to the mandible, we conduct the masticatory simulation. Finally, we compare the resulting Von Mises stress of the customized plate and of the bent plate. The bent plate shows much higher stress than the customized one due to the residual stresses form the bending process. The study shows that plastic deformation in the plate may decrease the safety of the reconstruction surgery.

보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계 (Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot)

  • 이상협;신성열;이준원;김창환
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

Copy Paper as a Platform for Low-cost Sensitive Glucose Sensing

  • Ye Lin Kim;Young-Mog Kim;Junghwan Oh;Joong Ho Shin
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.16-21
    • /
    • 2023
  • This study reports the potential of using commercial copy papers as substrates for simple sensitive glucose detection. Typical paper-based devices use filter papers as porous substrates that can contain reagents; however, this is the first study to report the use of copy papers for the purpose of enhancing enzymatic colorimetric detection. Glucose detection using glucose oxidase, horseradish peroxidase and potassium iodide was performed on a copy paper, cellulose-based filter paper, and polyethylene film. The results indicated that the copy paper exhibited a stronger coloration than the other substrates. Reagents required for detection were dried on the copy paper, and a 3D-printed holder was designed to provide an environment for consistent imaging, making it a convenient cost-effective option for point-of-care testing using a mobile phone camera. The simple paper-based glucose sensor exhibited a linear range of 0.1-20 mM, limit of quantification of 0.477 mM, and limit of detection of 0.143 mM.

Virtual Reality and Augmented Reality in Plastic Surgery: A Review

  • Kim, Youngjun;Kim, Hannah;Kim, Yong Oock
    • Archives of Plastic Surgery
    • /
    • 제44권3호
    • /
    • pp.179-187
    • /
    • 2017
  • Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

측면낙상 시뮬레이션용 대퇴골 모델 개발에 관한 연구 (Development of Femoral Bone Model of Human Body for Simulation of Side Falls)

  • 박지수;구상모;김충현
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.956-961
    • /
    • 2014
  • Due to the increasing needs of anti-fall device for elderly, it is required to develop the test rigs for fall simulation. The femoral bone model consists of silicone and steel is used as an effective device to simulate falls. In this work, we propose five different femoral bone models and analyse them by using a commercial FEA tool. It has been shown that two kinds of simplified models exhibit the simulated side falls with an error range of ~1% in the impact load of femoral neck compared with full model. Especially, the upper tissue model is found to provide us with the best efficient test environment, attributable to its simple structure.

Force Sensing Resistor를 이용한 인체압력중심 변화 분석 (Center of Pressure of a Human Body using Force Sensing Resistor)

  • 박철;박신석;김충현
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1722-1725
    • /
    • 2014
  • An experimental investigation of COP(center of pressure) was performed using FSR(force sensing resistor) and force plate. The FSR sensor system is used as effective device to detect the movement of human body in activities of daily living. It has been shown that the FSR provides the trajectories of COP with repeatability and reliability.

3D Inspection by Registration of CT and Dual X-ray Images

  • Kim, Youngjun;Kim, Wontae;Lee, Deukhee
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2016
  • Computed tomography (CT) can completely digitize the interior and the exterior of nearly any object without any destruction. Generally, the resolution for industrial CT is below a few microns. The industrial CT scanning, however, has a limitation because it requires long measuring and processing time. Whereas, 2D X-ray imaging is fast. In this paper, we propose a novel concept of 3D non-destructive inspection technique using the advantages of both micro-CT and dual X-ray images. After registering the master object’s CT data and the sample objects’ dual X-ray images, 3D non-destructive inspection is possible by analyzing the matching results. Calculation for the registration is accelerated by parallel computing using graphics processing unit (GPU).

Piezoelectric Ultrasound MEMS Transducers for Fingerprint Recognition

  • Jung, Soo Young;Park, Jin Soo;Kim, Min-Seok;Jang, Ho Won;Lee, Byung Chul;Baek, Seung-Hyub
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.286-292
    • /
    • 2022
  • As mobile electronics become smarter, higher-level security systems are necessary to protect private information and property from hackers. For this, biometric authentication systems have been widely studied, where the recognition of unique biological traits of an individual, such as the face, iris, fingerprint, and voice, is required to operate the device. Among them, ultrasound fingerprint imaging technology using piezoelectric materials is one of the most promising approaches adopted by Samsung Galaxy smartphones. In this review, we summarize the recent progress on piezoelectric ultrasound micro-electro-mechanical systems (MEMS) transducers with various piezoelectric materials and provide insights to achieve the highest-level biometric authentication system for mobile electronics.

Therapeutic effect of marine bioactive substances against periodontitis based on in vitro, in vivo, and clinical studies

  • Tae-Hee Kim;Se-Chang Kim;Won-Kyo Jung
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Marine bioactive substances (MBS), such as phlorotannins, collagens, peptides, sterols, and polysaccharides, are increasing attention as therapeutic agents for several diseases due to their pharmacological effects. Previous studies have demonstrated the biological activities of MBS including antibacterial, anticoagulant, antidiabetic, antimicrobial, anti-inflammatory activities. Among numerous human diseases, periodontitis is one of the high-prevalence inflammatory diseases in the world. To treat periodontitis, several surgeries (bone grafting, flap surgery, and soft tissue graft) are usually used. However, the surgery for patients with chronic periodontitis induces several side effects, including additional inflammatory responses at the operated site, chronic wound healing, and secondary surgery. Therefore, this review assessed the most recent trends in MBS using Google Scholar, PubMed, and Web of Science search engines to develop marine-derived therapeutic agents for periodontitis. Further, we summarized the current applications and therapeutic potential of MBS to serve as a reference for developing novel technologies applied to MBS against periodontitis treatment.