• 제목/요약/키워드: biomimetic apatite coating

검색결과 5건 처리시간 0.022초

티타늄분말의 표면에 석출된 생체모방 아파타이트 (Biomimetic Apatite Precipitated on the Surface of Titanium Powder)

  • 김종희;심영욱;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

Ti-6Al-7Nb and Ti-6Al-4V 합금의 생체활성에 미치는 콜라겐 처리의 영향 (Effect of Collagen Treatment on Bioactivity of Ti-6Al- 7Nb and Ti-6Al-4V Alloys)

  • 김태호;이갑호;홍순익
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.638-643
    • /
    • 2008
  • Biomimetic apatite formation and deposition behaviors of Ti-6Al-7Nb and Ti-6Al-4V plates in simulated body fluids(SBF) under various conditions were examined. In case of regular samples without collagen treatments the weight gain due to apatite precipitation on the surface in Ti-6Al-4V was found to be higher than in Ti-6Al-7Nb. In case of collagen-coated samples, the weight gain in Ti-6Al-4V continued to be higher than in Ti-6Al-7Nb, but the difference between the two became smaller. Both Ti-6Al-7Nb and Ti-6Al-4V samples with collagen coating exhibited an appreciable increase of weight gain, which may be caused by the interaction between collagen and $Ca^{+2}$ ions. The weight gain was found to be not much affected by the addition of collagen to SBF. The ill-defined granular structure in the presence of collagen can be associated with the increasing volume fraction of amorphous calcium phosphate.

표면변환이 Zr-1Nb합금의 아파타이트 석출에 미치는 효과 (Effects of Surface Modification on Biomimetic Deposition of Apatite in Zr-1Nb)

  • 김태호;조규진;홍순익
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.575-580
    • /
    • 2010
  • Effects of the surface modification on the deposition behaviors of apatite crystals in Zr-1Nb plates were studied. Zr-1Nb alloy plates were polished with abrasive papers to have different roughness and some of them were treated in NaOH or coated with collagen before deposition of apatites in the simulated body fluid (SBF). The weight gain due to the deposition of apatite crystals increased as the surface roughness increased in Zr-1Nb. The size of granular apatite crystals were found to be smaller in Zr-1Nb roughened by $162{\mu}m$ abrasive paper than in Zr-1Nb roughened by $8.4{\mu}m$ paper, suggesting the nucleation rate increased with increase of surface roughness. After, 10 days immersion in a SBF, NaOH-treated Zr-1Nb was completely coated with apatite with the deposited apatite weight comparable to that in Ti-6Al-4V. The deposition rate of Zr-1Nb was not appreciably influenced by NaOH treatment unlike the significant influence of NaOHtreatment on the deposition rate of apatite in Ti-6Al-4V. One significant observation in this study is an appreciable increase of the apatite deposition rate after collagen coating both on Zr-1Nb and Ti-6Al-4V plate, which may be caused by the interaction between collagen and $Ca^{+2}$ ions.

Preparation and characterization of zirconium nitride and hydroxyapatite layered coatings for biomedical applications

  • ;이준희;홍순익
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.102.2-102.2
    • /
    • 2012
  • Different layers of zirconium nitride (ZrN) and hydroxyapatite (HA) coatings were prepared on cp Ti substrate for biomedical applications. The main idea is to improve the mechanical strength as well as the biocompatibility of the coating. ZrN is known for its high mechanical strength, corrosion resistance. HA is well known for its biocompatibility properties. Hence, in this study, both materials were coated on a cp Ti substrate with bottom layer with ZrN for good bonding with substrate and the top layer with HA for induce bioactivity. Middle layer was formed by a composite of HA and ZrN. Detail analyses of the layered coatings for its structural, morphological, topographical properties were carried out. Then the mechanical property of the layered coatings was analyzed by nanoindentation. Biomimetic growths of apatite on the functionally graded coatings were determined by simulated body fluid method. This study provides promising results to use this kind of coatings in biomedical field.

  • PDF