• 제목/요약/키워드: biometrics recognition

검색결과 220건 처리시간 0.028초

생체 인식 인식 시스템을 위한 주의 인식 잔차 분할 (Attention Aware Residual U-Net for Biometrics Segmentation)

  • 앤디;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.300-302
    • /
    • 2022
  • Palm vein identification has attracted attention due to its distinct characteristics and excellent recognition accuracy. However, many contactless palm vein identification systems suffer from the issue of having low-quality palm images, resulting in degradation of recognition accuracy. This paper proposes the use of U-Net architecture to correctly segment the vascular blood vessel from palm images. Attention gate mechanism and residual block are also utilized to effectively learn the crucial features of a specific segmentation task. The experiments were conducted on CASIA dataset. Hessian-based Jerman filtering method is applied to label the palm vein patterns from the original images, then the network is trained to segment the palm vein features from the background noise. The proposed method has obtained 96.24 IoU coefficient and 98.09 dice coefficient.

A Review of Public Datasets for Keystroke-based Behavior Analysis

  • Kolmogortseva Karina;Soo-Hyung Kim;Aera Kim
    • 스마트미디어저널
    • /
    • 제13권7호
    • /
    • pp.18-26
    • /
    • 2024
  • One of the newest trends in AI is emotion recognition utilizing keystroke dynamics, which leverages biometric data to identify users and assess emotional states. This work offers a comparison of four datasets that are frequently used to research keystroke dynamics: BB-MAS, Buffalo, Clarkson II, and CMU. The datasets contain different types of data, both behavioral and physiological biometric data that was gathered in a range of environments, from controlled labs to real work environments. Considering the benefits and drawbacks of each dataset, paying particular attention to how well it can be used for tasks like emotion recognition and behavioral analysis. Our findings demonstrate how user attributes, task circumstances, and ambient elements affect typing behavior. This comparative analysis aims to guide future research and development of applications for emotion detection and biometrics, emphasizing the importance of collecting diverse data and the possibility of integrating keystroke dynamics with other biometric measurements.

얼굴인식 시스템의 시나리오 기반 평가 방법론 (Evaluation of Face Recognition System based on Scenarios)

  • 맹두열;홍병우;김성조
    • 한국멀티미디어학회논문지
    • /
    • 제13권4호
    • /
    • pp.487-495
    • /
    • 2010
  • 바이오인식 (Biometrics) 시스템의 사용이 보편화 되면서 그들의 성능에 대해서 보다 정확하고 안정된 평가를 제공하는 방법이 요구된다. 다양한 바이오 인식 기술 중에서 얼굴인식 기술이 널리 사용되고 있으며 안정적인 얼굴인식 시스템의 개발을 위한 지표를 마련하고 얼굴인식 시스템이 제공해야 하는 성능에 대한 기준을 제시하기 위해서 얼굴인식 시스템의 성능을 평가해야 할 필요성이 커지게 되었다. 하지만 얼굴인식 시스템의 성능에 영향을 미치는 요소들이 매우 다양하고 복잡하기 때문에 얼굴인식 시스템의 성능을 평가하는 것은 어려운 일이다. 그렇기 때문에 이러한 환경요소에 대해서 개별적으로 평가하는 것보다 종합적으로 얼굴인식 시스템의 활용 시나리오를 기반으로 평가하는 것이 보다 효율적이고 효과적이다. 이 논문에서는 얼굴인식 시스템에 영향을 미치는 환경변수들을 분석하고 그 환경변수들을 고려하는 얼굴인식 시스템에 대한 평가방법을 제안하는 것을 목적으로 한다. 특별히 환경변수들을 개별적으로 평가하는 것이 아니고 그들의 조합을 고려하는 시나리오를 기반으로 평가하는 방법을 제안한다. 또한 일반적인 환경을 가정하는 시나리오 예시를 통해서 얼굴인식 시스템을 종합적인 환경변수를 고려하여 평가하는 것을 보여주었다.

Reflection-type Finger Vein Recognition for Mobile Applications

  • Zhang, Congcong;Liu, Zhi;Liu, Yi;Su, Fangqi;Chang, Jun;Zhou, Yiran;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.467-476
    • /
    • 2015
  • Finger vein recognition, which is a promising biometric method for identity authentication, has attracted significant attention. Considerable research focuses on transmission-type finger vein recognition, but this type of authentication is difficult to implement in mobile consumer devices. Therefore, reflection-type finger vein recognition should be developed. In the reflection-type vein recognition field, the majority of researchers concentrate on palm and palm dorsa patterns, and only a few pay attention to reflection-type finger vein recognition. Thus, this paper presents reflection-type finger vein recognition for biometric application that can be integrated into mobile consumer devices. A database is built to test the proposed algorithm. A novel method of region-of-interest localization for a finger vein image is introduced, and a scheme for effectively extracting finger vein features is proposed. Experiments demonstrate the feasibility of reflection-type finger vein recognition.

델파이와 계층분석기법을 이용한 스마트폰 잠금 알고리즘 선호도 분석 (A Preference of Smartphone Locking Algorithms Using Delphi and AHP (Aanalytic Hierarchy Process))

  • 남수태;신성윤;진찬용
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1228-1233
    • /
    • 2019
  • 최근 스마트폰 잠금 해제 방법에 암호화 기술을 이용한 다양한 알고리즘이 채택된 제품이 출시되고 있다. 이미 상용화에 성공한 인간의 생체인식 기술을 통해 해결하고자 하는 방향으로 진보해 나가고 있다, 이러한 기술에는 지문인식, 얼굴인식, 홍채인식 등이 여기에 속한다. 본 연구의 평가항목에는 지문인식, 얼굴인식, 홍채인식, 패턴인식 그리고 패스워드 입력방식 포함하여 5가지 알고리즘이다. 이렇게 채택된 알고리즘을 기준으로 AHP 기법을 이용하여 스마트폰 사용자들이 선호하는 우선순위를 분석하였다. 스마트폰 사용자가 가장 선호하는 우선순위 1위는 지문인식( .400)이 차지하였다. 다음으로 스마트폰 사용자가 선호하는 우선순위 2위는 패턴인식( .237)이 위치하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하였다.

Web-based University Classroom Attendance System Based on Deep Learning Face Recognition

  • Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.503-523
    • /
    • 2022
  • Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.

새로운 정합 알고리즘을 이용한 손가락 정맥 인식 방법 (A Method for Finger Vein Recognition using a New Matching Algorithm)

  • 김희승;조준희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권11호
    • /
    • pp.859-865
    • /
    • 2010
  • 이 논문에서 손가락 정맥영상에 대한 새로운 인식 방법을 제시한다. 손가락 정맥인식은 대중적으로 사용되고 있는 지문인식의 위조가능성을 배제할 수 있고, 홍채인식의 불편한 영상획득 방식을 피할 수 있는 좋은 개인 인중 방편으로 주목 받고 있다. 손가락 정맥영상을 지역적 히스토그램 균등화에 의하여 전처리하고, 이것을 세선화 처리하여 선 형태의 정맥을 얻는다. 이렇게 얻어진 선 형태의 정맥선 영상에 HS정합 알고리즘(HeeSung's Matching Algorithm) 이라고 명명된 새로운 정합 알고리즘을 적용하여 정맥의 정합 여부를 가린다. 이 새로운 정합 알고리즘은 세선화나 에지 검출 처리한 여러 가지 선 모양의 영상인식에 좋은 효과를 보이고 있다. 개인당 5편씩 총 130명분 650편의 손가락 영상에 대한 인식실험 결과 99.20%의 인식률을 보였다. 한 쌍의 영상 정합처리에 단 60ms 의 처리 속도를 보였다.

NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구 (A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.46-54
    • /
    • 2006
  • 최근 각종 온라인 상거래 및 개인 신분카드 이용이 늘어나면서 개인 인증의 중요성이 부각되고 있다. RFID(Radio Frequency Identification) tag가 내장된 개인 신분 카드가 점차 증가하고 있지만, 본인의 인증을 할 수 있는 방법이 미비하기 때문에, 자동화 할 수 있는 대책이 시급하다. RFID tag는 현재 메모리 용량이 매우 작기 때문에, 개인의 생체정보를 저장하기 위해서는 효율적인 특징추출 방법이 필요하며, 저장된 특징들을 비교하기 위해서는 새로운 인식방법이 필요하다. 본 논문에서는 인간의 인지학적인 두뇌 원리인 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특정을 구성할 수 있는 해마 신경망 모델링 알고리즘을 이용한 개인생체 인증 시스템에 관한 연구를 수행하였다. 시스템은 크게 NMF(Non-negative Matrix Factorization)와 LDA(Linear Discriminants Analysis) 혼합 알고리즘을 이용한 특징 추출 부분과 해마신경망을 모델링하고 인식 성능을 실험하는 것으로 구성 되어 있다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정변화와 포즈변화가 포함된 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특정 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

유전자 알고리즘에 의한 얼굴인식성능의 향상 방안 (The Improving Method of Facial Recognition Using the Genetic Algorithm)

  • 배경율
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.95-105
    • /
    • 2005
  • 얼굴인식을 이용해 출입을 통제하는 보안 시스템에 있어서 얼굴인식성능은 인증 대상의 변화 (표정, 헤어스타일, 나이, 화장)에 커다란 영향을 받는다. 이처럼 수시로 변화하는 환경 변화를 보완하기 위하여 일반적인 얼굴인식 시스템에서는 일정한 보안 임계치를 설정해두고 임계치 내에 포함되는 얼굴을 기존에 등록된 얼굴과 교체하거나 추가적으로 등록하는 업데이트 방식이 사용되고 있다. 그러나 이러한 방식은 부정확한 매칭 결과를 보이거나, 유사한 얼굴에 쉽게 반응할 수 있다. 따라서 우리는 각 얼굴간의 유사도나 인증 대상의 변화를 흡수하며, 잘못된 얼굴 등록을 방지하기 위한 방법으로 학습 성능이 우수한 유전자 알고리즘을 제안하고자 한다. 변화가 심하고 유사한 얼굴영상(한사람 당 10개씩의 변화된 300개의 얼굴 영상)에 대하여 실험을 수행하였고, 얼굴인식기법은 주성분 분석에 기초한 고유얼굴을 이용하였다. 제안된 방식은 기존 얼굴인식 출입통제 시스템에 비해 우성인자의 인식률을 향상뿐만 아니라 유사 얼굴(열성인자)에 반응하는 비율을 감소시키는 효과를 보였다.

  • PDF

홈보안 시스템을 위한 CNN 기반 2D와 2.5D 얼굴 인식 (CNN Based 2D and 2.5D Face Recognition For Home Security System)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1207-1214
    • /
    • 2019
  • 4차 산업혁명의 기술이 우리도 모르는 사이 우리의 삶 속으로 스며들고 있다. CNN이 이미지 인식 분야에서 탁월한 능력을 보여준 이후 많은 IoT 기반 홈보안 시스템은 침입자로부터 가족과 가정을 보호하며 얼굴을 인식하기 위한 좋은 생체인식 방법으로 CNN을 사용하고 있다. 본 논문에서는 2D와 2.5D 이미지에 대하여 여러 종류의 입력 이미지 크기와 필터를 가지고 있는 CNN의 구조를 연구한다. 실험 결과는 50*50 크기를 가진 2.5D 입력 이미지, 2 컨벌류션과 맥스풀링 레이어, 3*3 필터를 가진 CNN 구조가 0.966의 인식률을 보여 주었고, 1개의 입력 이미지에 대하여 가장 긴 CPU 소비시간은 0.057S로 나타났다. 홈보안 시스템은 좋은 얼굴 인식률과 짧은 연산 시간을 요구하므로 본 논문에서 제안한 구조의 CNN은 홈보안 시스템에서 얼굴인식을 기반으로 하는 액추에이터 제어 등에 적합한 방법이 될 것이다.