Palm vein identification has attracted attention due to its distinct characteristics and excellent recognition accuracy. However, many contactless palm vein identification systems suffer from the issue of having low-quality palm images, resulting in degradation of recognition accuracy. This paper proposes the use of U-Net architecture to correctly segment the vascular blood vessel from palm images. Attention gate mechanism and residual block are also utilized to effectively learn the crucial features of a specific segmentation task. The experiments were conducted on CASIA dataset. Hessian-based Jerman filtering method is applied to label the palm vein patterns from the original images, then the network is trained to segment the palm vein features from the background noise. The proposed method has obtained 96.24 IoU coefficient and 98.09 dice coefficient.
One of the newest trends in AI is emotion recognition utilizing keystroke dynamics, which leverages biometric data to identify users and assess emotional states. This work offers a comparison of four datasets that are frequently used to research keystroke dynamics: BB-MAS, Buffalo, Clarkson II, and CMU. The datasets contain different types of data, both behavioral and physiological biometric data that was gathered in a range of environments, from controlled labs to real work environments. Considering the benefits and drawbacks of each dataset, paying particular attention to how well it can be used for tasks like emotion recognition and behavioral analysis. Our findings demonstrate how user attributes, task circumstances, and ambient elements affect typing behavior. This comparative analysis aims to guide future research and development of applications for emotion detection and biometrics, emphasizing the importance of collecting diverse data and the possibility of integrating keystroke dynamics with other biometric measurements.
바이오인식 (Biometrics) 시스템의 사용이 보편화 되면서 그들의 성능에 대해서 보다 정확하고 안정된 평가를 제공하는 방법이 요구된다. 다양한 바이오 인식 기술 중에서 얼굴인식 기술이 널리 사용되고 있으며 안정적인 얼굴인식 시스템의 개발을 위한 지표를 마련하고 얼굴인식 시스템이 제공해야 하는 성능에 대한 기준을 제시하기 위해서 얼굴인식 시스템의 성능을 평가해야 할 필요성이 커지게 되었다. 하지만 얼굴인식 시스템의 성능에 영향을 미치는 요소들이 매우 다양하고 복잡하기 때문에 얼굴인식 시스템의 성능을 평가하는 것은 어려운 일이다. 그렇기 때문에 이러한 환경요소에 대해서 개별적으로 평가하는 것보다 종합적으로 얼굴인식 시스템의 활용 시나리오를 기반으로 평가하는 것이 보다 효율적이고 효과적이다. 이 논문에서는 얼굴인식 시스템에 영향을 미치는 환경변수들을 분석하고 그 환경변수들을 고려하는 얼굴인식 시스템에 대한 평가방법을 제안하는 것을 목적으로 한다. 특별히 환경변수들을 개별적으로 평가하는 것이 아니고 그들의 조합을 고려하는 시나리오를 기반으로 평가하는 방법을 제안한다. 또한 일반적인 환경을 가정하는 시나리오 예시를 통해서 얼굴인식 시스템을 종합적인 환경변수를 고려하여 평가하는 것을 보여주었다.
Finger vein recognition, which is a promising biometric method for identity authentication, has attracted significant attention. Considerable research focuses on transmission-type finger vein recognition, but this type of authentication is difficult to implement in mobile consumer devices. Therefore, reflection-type finger vein recognition should be developed. In the reflection-type vein recognition field, the majority of researchers concentrate on palm and palm dorsa patterns, and only a few pay attention to reflection-type finger vein recognition. Thus, this paper presents reflection-type finger vein recognition for biometric application that can be integrated into mobile consumer devices. A database is built to test the proposed algorithm. A novel method of region-of-interest localization for a finger vein image is introduced, and a scheme for effectively extracting finger vein features is proposed. Experiments demonstrate the feasibility of reflection-type finger vein recognition.
최근 스마트폰 잠금 해제 방법에 암호화 기술을 이용한 다양한 알고리즘이 채택된 제품이 출시되고 있다. 이미 상용화에 성공한 인간의 생체인식 기술을 통해 해결하고자 하는 방향으로 진보해 나가고 있다, 이러한 기술에는 지문인식, 얼굴인식, 홍채인식 등이 여기에 속한다. 본 연구의 평가항목에는 지문인식, 얼굴인식, 홍채인식, 패턴인식 그리고 패스워드 입력방식 포함하여 5가지 알고리즘이다. 이렇게 채택된 알고리즘을 기준으로 AHP 기법을 이용하여 스마트폰 사용자들이 선호하는 우선순위를 분석하였다. 스마트폰 사용자가 가장 선호하는 우선순위 1위는 지문인식( .400)이 차지하였다. 다음으로 스마트폰 사용자가 선호하는 우선순위 2위는 패턴인식( .237)이 위치하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하였다.
Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.503-523
/
2022
Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.
이 논문에서 손가락 정맥영상에 대한 새로운 인식 방법을 제시한다. 손가락 정맥인식은 대중적으로 사용되고 있는 지문인식의 위조가능성을 배제할 수 있고, 홍채인식의 불편한 영상획득 방식을 피할 수 있는 좋은 개인 인중 방편으로 주목 받고 있다. 손가락 정맥영상을 지역적 히스토그램 균등화에 의하여 전처리하고, 이것을 세선화 처리하여 선 형태의 정맥을 얻는다. 이렇게 얻어진 선 형태의 정맥선 영상에 HS정합 알고리즘(HeeSung's Matching Algorithm) 이라고 명명된 새로운 정합 알고리즘을 적용하여 정맥의 정합 여부를 가린다. 이 새로운 정합 알고리즘은 세선화나 에지 검출 처리한 여러 가지 선 모양의 영상인식에 좋은 효과를 보이고 있다. 개인당 5편씩 총 130명분 650편의 손가락 영상에 대한 인식실험 결과 99.20%의 인식률을 보였다. 한 쌍의 영상 정합처리에 단 60ms 의 처리 속도를 보였다.
최근 각종 온라인 상거래 및 개인 신분카드 이용이 늘어나면서 개인 인증의 중요성이 부각되고 있다. RFID(Radio Frequency Identification) tag가 내장된 개인 신분 카드가 점차 증가하고 있지만, 본인의 인증을 할 수 있는 방법이 미비하기 때문에, 자동화 할 수 있는 대책이 시급하다. RFID tag는 현재 메모리 용량이 매우 작기 때문에, 개인의 생체정보를 저장하기 위해서는 효율적인 특징추출 방법이 필요하며, 저장된 특징들을 비교하기 위해서는 새로운 인식방법이 필요하다. 본 논문에서는 인간의 인지학적인 두뇌 원리인 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특정을 구성할 수 있는 해마 신경망 모델링 알고리즘을 이용한 개인생체 인증 시스템에 관한 연구를 수행하였다. 시스템은 크게 NMF(Non-negative Matrix Factorization)와 LDA(Linear Discriminants Analysis) 혼합 알고리즘을 이용한 특징 추출 부분과 해마신경망을 모델링하고 인식 성능을 실험하는 것으로 구성 되어 있다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정변화와 포즈변화가 포함된 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특정 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.
얼굴인식을 이용해 출입을 통제하는 보안 시스템에 있어서 얼굴인식성능은 인증 대상의 변화 (표정, 헤어스타일, 나이, 화장)에 커다란 영향을 받는다. 이처럼 수시로 변화하는 환경 변화를 보완하기 위하여 일반적인 얼굴인식 시스템에서는 일정한 보안 임계치를 설정해두고 임계치 내에 포함되는 얼굴을 기존에 등록된 얼굴과 교체하거나 추가적으로 등록하는 업데이트 방식이 사용되고 있다. 그러나 이러한 방식은 부정확한 매칭 결과를 보이거나, 유사한 얼굴에 쉽게 반응할 수 있다. 따라서 우리는 각 얼굴간의 유사도나 인증 대상의 변화를 흡수하며, 잘못된 얼굴 등록을 방지하기 위한 방법으로 학습 성능이 우수한 유전자 알고리즘을 제안하고자 한다. 변화가 심하고 유사한 얼굴영상(한사람 당 10개씩의 변화된 300개의 얼굴 영상)에 대하여 실험을 수행하였고, 얼굴인식기법은 주성분 분석에 기초한 고유얼굴을 이용하였다. 제안된 방식은 기존 얼굴인식 출입통제 시스템에 비해 우성인자의 인식률을 향상뿐만 아니라 유사 얼굴(열성인자)에 반응하는 비율을 감소시키는 효과를 보였다.
4차 산업혁명의 기술이 우리도 모르는 사이 우리의 삶 속으로 스며들고 있다. CNN이 이미지 인식 분야에서 탁월한 능력을 보여준 이후 많은 IoT 기반 홈보안 시스템은 침입자로부터 가족과 가정을 보호하며 얼굴을 인식하기 위한 좋은 생체인식 방법으로 CNN을 사용하고 있다. 본 논문에서는 2D와 2.5D 이미지에 대하여 여러 종류의 입력 이미지 크기와 필터를 가지고 있는 CNN의 구조를 연구한다. 실험 결과는 50*50 크기를 가진 2.5D 입력 이미지, 2 컨벌류션과 맥스풀링 레이어, 3*3 필터를 가진 CNN 구조가 0.966의 인식률을 보여 주었고, 1개의 입력 이미지에 대하여 가장 긴 CPU 소비시간은 0.057S로 나타났다. 홈보안 시스템은 좋은 얼굴 인식률과 짧은 연산 시간을 요구하므로 본 논문에서 제안한 구조의 CNN은 홈보안 시스템에서 얼굴인식을 기반으로 하는 액추에이터 제어 등에 적합한 방법이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.