With the application and promotion of biometric technology, biometrics has become more and more important to identity authentication. In order to ensure the privacy of the user, the biometrics cannot be stored or manipulated in plaintext. Aiming at this problem, this paper analyzes and summarizes the scheme and performance of the existing biometric authentication system, and proposes an iris-based ciphertext authentication system based on fully homomorphic encryption using the FV scheme. The implementation of the system is partly powered by Microsoft's SEAL (Simple Encrypted Arithmetic Library). The entire system can complete iris authentication without decrypting the iris feature template, and the database stores the homomorphic ciphertext of the iris feature template. Thus, there is no need to worry about the leakage of the iris feature template. At the same time, the system does not require a trusted center for authentication, and the authentication is completed on the server side directly using the one-time MAC authentication method. Tests have shown that when the system adopts an iris algorithm with a low depth of calculation circuit such as the Hamming distance comparison algorithm, it has good performance, which basically meets the requirements of real application scenarios.
본 논문은 얼굴과 음성 정보를 사용한 다중 바이오 인증에서, 특정 단계의 융합과 결정 단계의 융합을 동시에 수행하는 다단계 융합 방법을 제안한다. 얼굴과 음성 특징을 1차 융합한 얼굴 음성 융합특징에 대해 Support Vector Machines(SVM)을 생성한 후, 이 융합특징 SVM 인증기의 결정과 얼굴 SVM 인증기의 결정, 음성 SVM 인증기의 결정들을 다시 2차 융합하여 최종 인증 여부를 결정한다. XM2VTS 멀티모달 데이터베이스를 사용하여 특징 단계 융합, 결정 단계 융합, 다단계 융합 인증을 비교 실험한 결과, 제안한 다단계 융합에 의한 인증이 가장 우수한 성능을 보였다.
개인의 신원을 확인하기 위해 인간의 생물학적 특성을 사용하는 방법에 대한 연구가 활발히 진행되고 있다. 심전도를 이용한 생체 인식 기술은 피험자에 피부자극을 일으키지 않고 위조가 어렵다. 기존의 생체 인식 시스템인 지문, 얼굴 등의 인식시스템과 쉽게 접목이 가능하여 다중 생체 인식 시스템으로 응용할 수 있다. 본 논문에서는 이산 웨이블릿 변환 계수를 사용한 심전도의 파형 특성분석법으로 개인을 식별하는 방법을 제안하였다. 심전도 신호의 특징추출은 총 9개의 이산 웨이블릿 변환 계수를 대상으로 상관 계수 분석으로 수행하였다. 식별은 각 클래스의 특징벡터를 입력으로 오류 역전파 신경망을 적용하여 수행하였다. MIT-BIH QT 데이터베이스내 24명의 심전도에 대해 98.88%의 식별율을 나타냈다.
Gait is defined as "a manor of walking". It can used as a biometric measure to recognize known persons. Gait is an idiosyncratic feature determined by an individual's weight, stride length, and posture combined with characteristic motion. but its feature extracted from images varies with the viewpoint. In this paper, we propose a gait recognition method using a planer homography, which is robust for viewpoint variation. We represent an individual as key-silhouettes. And we endow key-silhouettes with weight calculated using the characteristic of PCA. Experimental result shows that proposed method is robust for viewpoint variation as images synthesised same viewpoint.
Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. This paper is appropriate for the embedded environment using local gradient histogram embedded system using iris feature extraction methods have implement. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.
The extraction and recognition of human motion characteristics need to combine biometrics to determine and judge human behavior in the movement and distinguish individual identities. The so-called biometric technology, the specific operation is the use of the body's inherent biological characteristics of individual identity authentication, the most noteworthy feature is the invariance and uniqueness. In the past, the behavior recognition technology based on the single characteristic was too restrictive, in this paper, we proposed a mixed feature which combined global silhouette feature and local optical flow feature, and this combined representation was used for human action recognition. And we will use the KTH database to train and test the recognition system. Experiments have been very desirable results.
Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.503-523
/
2022
Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.
Authentication methods on smartphone are demanded to be implicit to users with minimum users' interaction. Existing authentication methods (e.g. PINs, passwords, visual patterns, etc.) are not effectively considering remembrance and privacy issues. Behavioral biometrics such as keystroke dynamics and gait biometrics can be acquired easily and implicitly by using integrated sensors on smartphone. We propose a biometric model involving keystroke dynamics for implicit authentication on smartphone. We first design a feature extraction method for keystroke dynamics. And then, we build a fusion model of keystroke dynamics and gait to improve the authentication performance of single behavioral biometric on smartphone. We operate the fusion at both feature extraction level and matching score level. Experiment using linear Support Vector Machines (SVM) classifier reveals that the best results are achieved with score fusion: a recognition rate approximately 97.86% under identification mode and an error rate approximately 1.11% under authentication mode.
최근 코로나-19의 유행에 따른 전염병 예방 및 차단을 위해 비접촉 생체 정보 취득 및 분석 기술이 주목을 받고 있다. 습식 및 부착형 생체정보 취득 방법은 정확하게 생체정보를 측정 할 수 있는 장점이 있지 만 밀 접촉에 따른 전염이 높아지는 위험성을 내포하고 있다. 이러한 문제점을 해결하기 위해 사람의 지문, 얼굴, 홍채, 정맥, 음성, 서명 등의 생체 정보를 자동화된 장치로 추출하는 비접촉 방식은 빅데이터와 AI 기술 적용으로 데이터 처리 속도가 빨라지고 인식 정확도가 높아지면서 다양한 산업에서 활용이 증가하고 있다. 그러나, 비접촉식 생체 데이터 취득 기술의 정확도가 개선되었지만, 비접촉 방법은 측정 대상 객체를 둘러싸고 있는 외부 온도, 습도, 조도 등의 주위 환경에 많은 영향을 받아 측정정보가 왜곡되는 현상이 발생하고 또한 정확도가 떨어지는 단점이 있다. 본 논문에서는 생체정보 분석을 위한 개인화 정보(이미지, 신호 등)의 해석을 위한 맥락기반 생체신호 모델링 기법을 제안 한다. 맥락기반 생체정보 모델링 기법은 성능 개선을 위해 생체정보 측정의 정황 정보와 사용자 정보를 복합적으로 고려하는 모델을 제시한다. 제안 모델은 예측 값 확률을 최대화할 수 있는 맥락기반 신호 해석을 통한 특징 확률분포를 기반으로 신호 정보를 분석한다.
Radio Frequency Identification (RFID) is a common term for technologies using micro chips that are able to communicate over short-range radio and that can be used for identifying physical objects. RFID technology already has several application areas and more are being envisioned all the time. While it has the potential of becoming a really ubiquitous part of the information society over time, there are many security and privacy concerns related to RFID that need to be solved. This paper proposes a method which could protect private information and ensure RFID's identification effectively storing face feature information on RFID tag. This method improved linear discriminant analysis has reduced the dimension of feature information which has large size of data. Therefore, face feature information can be stored in small memory field of RFID tag. The proposed algorithm in comparison with other previous methods shows better stability and elevated detection rate and also can be applied to the entrance control management system, digital identification card and others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.