• Title/Summary/Keyword: biomedical annotations

Search Result 13, Processing Time 0.019 seconds

A biomedically oriented automatically annotated Twitter COVID-19 dataset

  • Hernandez, Luis Alberto Robles;Callahan, Tiffany J.;Banda, Juan M.
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.21.1-21.5
    • /
    • 2021
  • The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, researchers have turned to more non-traditional sources of clinical data to characterize the disease in near-real time, study the societal implications of interventions, as well as the sequelae that recovered COVID-19 cases present. However, manually curated social media datasets are difficult to come by due to the expensive costs of manual annotation and the efforts needed to identify the correct texts. When datasets are available, they are usually very small and their annotations don't generalize well over time or to larger sets of documents. As part of the 2021 Biomedical Linked Annotation Hackathon, we release our dataset of over 120 million automatically annotated tweets for biomedical research purposes. Incorporating best-practices, we identify tweets with potentially high clinical relevance. We evaluated our work by comparing several SpaCy-based annotation frameworks against a manually annotated gold-standard dataset. Selecting the best method to use for automatic annotation, we then annotated 120 million tweets and released them publicly for future downstream usage within the biomedical domain.

Protein Ontology: Semantic Data Integration in Proteomics

  • Sidhu, Amandeep S.;Dillon, Tharam S.;Chang, Elizabeth;Sidhu, Baldev S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.388-391
    • /
    • 2005
  • The Protein Structural and Functional Conservation need a common language for data definition. With the help of common language provided by Protein Ontology the high level of sequence and functional conservation can be extended to all organisms with the likelihood that proteins that carry out core biological processes will again be probable orthologues. The structural and functional conservation in these proteins presents both opportunities and challenges. The main opportunity lies in the possibility of automated transfer of protein data annotations from experimentally traceable model organisms to a less traceable organism based on protein sequence similarity. Such information can be used to improve human health or agriculture. The challenge lies in using a common language to transfer protein data annotations among different species of organisms. First step in achieving this huge challenge is producing a structured, precisely defined common vocabulary using Protein Ontology. The Protein Ontology described in this paper covers the sequence, structure and biological roles of Protein Complexes in any organism.

  • PDF

Extending TextAE for annotation of non-contiguous entities

  • Lever, Jake;Altman, Russ;Kim, Jin-Dong
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.15.1-15.6
    • /
    • 2020
  • Named entity recognition tools are used to identify mentions of biomedical entities in free text and are essential components of high-quality information retrieval and extraction systems. Without good entity recognition, methods will mislabel searched text and will miss important information or identify spurious text that will frustrate users. Most tools do not capture non-contiguous entities which are separate spans of text that together refer to an entity, e.g., the entity "type 1 diabetes" in the phrase "type 1 and type 2 diabetes." This type is commonly found in biomedical texts, especially in lists, where multiple biomedical entities are named in shortened form to avoid repeating words. Most text annotation systems, that enable users to view and edit entity annotations, do not support non-contiguous entities. Therefore, experts cannot even visualize non-contiguous entities, let alone annotate them to build valuable datasets for machine learning methods. To combat this problem and as part of the BLAH6 hackathon, we extended the TextAE platform to allow visualization and annotation of non-contiguous entities. This enables users to add new subspans to existing entities by selecting additional text. We integrate this new functionality with TextAE's existing editing functionality to allow easy changes to entity annotation and editing of relation annotations involving non-contiguous entities, with importing and exporting to the PubAnnotation format. Finally, we roughly quantify the problem across the entire accessible biomedical literature to highlight that there are a substantial number of non-contiguous entities that appear in lists that would be missed by most text mining systems.

Opinion: Strategy of Semi-Automatically Annotating a Full-Text Corpus of Genomics & Informatics

  • Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.40.1-40.3
    • /
    • 2018
  • There is a communal need for an annotated corpus consisting of the full texts of biomedical journal articles. In response to community needs, a prototype version of the full-text corpus of Genomics & Informatics, called GNI version 1.0, has recently been published, with 499 annotated full-text articles available as a corpus resource. However, GNI needs to be updated, as the texts were shallow-parsed and annotated with several existing parsers. I list issues associated with upgrading annotations and give an opinion on the methodology for developing the next version of the GNI corpus, based on a semi-automatic strategy for more linguistically rich corpus annotation.

OrCanome: a Comprehensive Resource for Oral Cancer

  • Bhartiya, Deeksha;Kumar, Amit;Singh, Harpreet;Sharma, Amitesh;Kaushik, Anita;Kumari, Suchitra;Mehrotra, Ravi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1333-1336
    • /
    • 2016
  • Oral cancer is one of the most prevalent cancers in India but the underlying mechanisms are minimally unraveled. Cancer research has immensely benefited from genome scale high throughput studies which have contributed to expanding the volume of data. Such datasets also exist for oral cancer genes but there has been no consolidated approach to integrate the data to reveal meaningful biological information. OrCanome is one of the largest and comprehensive, user-friendly databases of oral cancer. It features a compilation of over 900 genes dysregulated in oral cancer and provides detailed annotations of the genes, transcripts and proteins along with additional information encompassing expression, inhibitors, epitopes and pathways. The resource has been envisioned as a one-stop solution for genomic, transcriptomic and proteomic annotation of these genes and the integrated approach will facilitate the identification of potential biomarkers and therapeutic targets.

Natural language processing techniques for bioinformatics

  • Tsujii, Jun-ichi
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.3-3
    • /
    • 2003
  • With biomedical literature expanding so rapidly, there is an urgent need to discover and organize knowledge extracted from texts. Although factual databases contain crucial information the overwhelming amount of new knowledge remains in textual form (e.g. MEDLINE). In addition, new terms are constantly coined as the relationships linking new genes, drugs, proteins etc. As the size of biomedical literature is expanding, more systems are applying a variety of methods to automate the process of knowledge acquisition and management. In my talk, I focus on the project, GENIA, of our group at the University of Tokyo, the objective of which is to construct an information extraction system of protein - protein interaction from abstracts of MEDLINE. The talk includes (1) Techniques we use fDr named entity recognition (1-a) SOHMM (Self-organized HMM) (1-b) Maximum Entropy Model (1-c) Lexicon-based Recognizer (2) Treatment of term variants and acronym finders (3) Event extraction using a full parser (4) Linguistic resources for text mining (GENIA corpus) (4-a) Semantic Tags (4-b) Structural Annotations (4-c) Co-reference tags (4-d) GENIA ontology I will also talk about possible extension of our work that links the findings of molecular biology with clinical findings, and claim that textual based or conceptual based biology would be a viable alternative to system biology that tends to emphasize the role of simulation models in bioinformatics.

  • PDF

Towards cross-platform interoperability for machine-assisted text annotation

  • de Castilho, Richard Eckart;Ide, Nancy;Kim, Jin-Dong;Klie, Jan-Christoph;Suderman, Keith
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • In this paper, we investigate cross-platform interoperability for natural language processing (NLP) and, in particular, annotation of textual resources, with an eye toward identifying the design elements of annotation models and processes that are particularly problematic for, or amenable to, enabling seamless communication across different platforms. The study is conducted in the context of a specific annotation methodology, namely machine-assisted interactive annotation (also known as human-in-the-loop annotation). This methodology requires the ability to freely combine resources from different document repositories, access a wide array of NLP tools that automatically annotate corpora for various linguistic phenomena, and use a sophisticated annotation editor that enables interactive manual annotation coupled with on-the-fly machine learning. We consider three independently developed platforms, each of which utilizes a different model for representing annotations over text, and each of which performs a different role in the process.

Biotea-2-Bioschemas, facilitating structured markup for semantically annotated scholarly publications

  • Garcia, Leyla;Giraldo, Olga;Garcia, Alexander;Rebholz-Schuhmann, Dietrich
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2019
  • The total number of scholarly publications grows day by day, making it necessary to explore and use simple yet effective ways to expose their metadata. Schema.org supports adding structured metadata to web pages via markup, making it easier for data providers but also for search engines to provide the right search results. Bioschemas is based on the standards of schema.org, providing new types, properties and guidelines for metadata, i.e., providing metadata profiles tailored to the Life Sciences domain. Here we present our proposed contribution to Bioschemas (from the project "Biotea"), which supports metadata contributions for scholarly publications via profiles and web components. Biotea comprises a semantic model to represent publications together with annotated elements recognized from the scientific text; our Biotea model has been mapped to schema.org following Bioschemas standards.

Social Media Mining Toolkit (SMMT)

  • Tekumalla, Ramya;Banda, Juan M.
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.16.1-16.5
    • /
    • 2020
  • There has been a dramatic increase in the popularity of utilizing social media data for research purposes within the biomedical community. In PubMed alone, there have been nearly 2,500 publication entries since 2014 that deal with analyzing social media data from Twitter and Reddit. However, the vast majority of those works do not share their code or data for replicating their studies. With minimal exceptions, the few that do, place the burden on the researcher to figure out how to fetch the data, how to best format their data, and how to create automatic and manual annotations on the acquired data. In order to address this pressing issue, we introduce the Social Media Mining Toolkit (SMMT), a suite of tools aimed to encapsulate the cumbersome details of acquiring, preprocessing, annotating and standardizing social media data. The purpose of our toolkit is for researchers to focus on answering research questions, and not the technical aspects of using social media data. By using a standard toolkit, researchers will be able to acquire, use, and release data in a consistent way that is transparent for everybody using the toolkit, hence, simplifying research reproducibility and accessibility in the social media domain.

Evaluation of Transfer Learning in Gastroscopy Image Classification using Convolutional Neual Network (합성곱 신경망을 활용한 위내시경 이미지 분류에서 전이학습의 효용성 평가)

  • Park, Sung Jin;Kim, Young Jae;Park, Dong Kyun;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.213-219
    • /
    • 2018
  • Stomach cancer is the most diagnosed cancer in Korea. When gastric cancer is detected early, the 5-year survival rate is as high as 90%. Gastroscopy is a very useful method for early diagnosis. But the false negative rate of gastric cancer in the gastroscopy was 4.6~25.8% due to the subjective judgment of the physician. Recently, the image classification performance of the image recognition field has been advanced by the convolutional neural network. Convolutional neural networks perform well when diverse and sufficient amounts of data are supported. However, medical data is not easy to access and it is difficult to gather enough high-quality data that includes expert annotations. So This paper evaluates the efficacy of transfer learning in gastroscopy classification and diagnosis. We obtained 787 endoscopic images of gastric endoscopy at Gil Medical Center, Gachon University. The number of normal images was 200, and the number of abnormal images was 587. The image size was reconstructed and normalized. In the case of the ResNet50 structure, the classification accuracy before and after applying the transfer learning was improved from 0.9 to 0.947, and the AUC was also improved from 0.94 to 0.98. In the case of the InceptionV3 structure, the classification accuracy before and after applying the transfer learning was improved from 0.862 to 0.924, and the AUC was also improved from 0.89 to 0.97. In the case of the VGG16 structure, the classification accuracy before and after applying the transfer learning was improved from 0.87 to 0.938, and the AUC was also improved from 0.89 to 0.98. The difference in the performance of the CNN model before and after transfer learning was statistically significant when confirmed by T-test (p < 0.05). As a result, transfer learning is judged to be an effective method of medical data that is difficult to collect good quality data.