• Title/Summary/Keyword: biomechanical system

Search Result 230, Processing Time 0.026 seconds

The effect of biomechanical isokinetic excercise of residual muscles in the stump on restoring gait of transfemoral and transtibial amputees (하지절단자의 보행 복원을 위한 단단부 잔존근육의 생체역학적 등속성 운동 효과에 대한 연구)

  • 홍정화;송창호;이재연;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.723-728
    • /
    • 2003
  • The physical restoration technology for lower limb amputees is being advanced as the biomechatronics is being applied to the area of rehabilitation. As the advanced prosthetics for lower limb amputees are introduced, a suitable prescription of biomechanical rehabilitation training becomes important to utilize the advanced full features of the devices. Since lower limb amputation significantly affects biomechanical balance of mosculoskeletal system for gait, an appropriate and optimal biomechanical training and exercise should be provided to rebalance the system before wearing the prostheses. Particularly, biomechanical muscular training for hip movements in the both affected and sound lower limbs is important to achieve a normal-like ambulation. However, there is no study to understand the effect of hip muscle strength on the gait performance of lower limb amputees. To understand the hip muscle strength characteristics for normal and amputated subjects, the isokinetic exercises for various ratios of concentric contraction to eccentric contraction were performed for hip flexion-extension and adduction-abduction. As a results. biomechanical isokinetic training protocols and performance measurement methodologies for lower limb amputees were developed in this study. Using the protocols and measurement methods, it has been understood that the appropriate and optimal biomechanical prescription for the rehabilitation process for lower limb amputees is important for restoring their gait ability

  • PDF

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

Anslysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung Hwan;Freivalds, Andris;Lee, Myun W.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.69-81
    • /
    • 1995
  • Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for the analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$^{TM}$, Virtual technologies) with eighteem joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented inte- grating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an efficient and cost-effective solution to task analysis of manual tool handling tasks.s.

  • PDF

Biomechanical Complications : Fracture and Screw loosening (Biomechanical Complications : 파절과 나사풀림)

  • Kim, Tae in
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Development of a Pressure Distribution Measurement System (압력분포 측정시스템의 개발)

  • 정진호;이기원;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • Pressure distributions of the soft tissue are valuable for understanding and diagnosing the disease characteristics due to the mechanical loading. Our system measures dynamic pressure distributions in real-time under the general PC environment, and analyzes various foot disorders. Main features of the developed system are as follows: (1) With the resistive pressure sensor matrix of 40${\times}$40 cells, the data is sent to the PC with the maximum sampling rate of 40 frames/sec. (2) For each frame, contact area, pressure and force are analyzed by graphic forms. Thus, various biomechanical parameters are easily determined at specific areas of interests. (3) A certain stance phase can be chosen for the analysis from the continuous walking, and the detailed biomechanical analysis can be done according to an arbitrary line dividing anterior/posterior or medial/lateral plantar areas. (4) The center of pressure (COP) is calculated and traced from the pressure distribution data, and thus the movement of the COP is monitored in detail. A few experiments revealed that our system successfully measured the dynamic plantar distribution during normal walking.

  • PDF

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Analysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung-Hwan;Freivalds, Andris;Lee, Myun-W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.596-605
    • /
    • 1994
  • An efficient measurement and evaluation system for hand tool tasks will provide a practical solution to the problem of designing and evaluating manual tool tasks in the workplace. Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$\^$TM/, Virtual technologies) with eighteen joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented integrating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an, efficient and cost-effective solution to task analysis of manual tool handling tasks. These tasks are becoming increasingly important areas of occupational health and safety of the country.

Biomechanical Evaluation of a Manual Wheelchair with Forward. Reverse Propulsion (정.역 구동 방식 수도 휠체어의 인체공학적 성능 분석)

  • Shin, Eung-Soo;Lee, Hee-Tae;Ahn, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.464-469
    • /
    • 2001
  • This work provides the biomechanical evaluations of a manual wheelchair with a bi-directional driving system. The new propulsion strategy can be accomplished by employing a special gear system that converts the oscillatory motion of a handrim into the unidirectional output motion of a wheel. A main feature of the forward. backward propulsion is to supply continuous driving torque without break. Motion. analysis has been performed through 2-dimensional image processing for measuring the kinematic properties of the upper arm and fore arm. Then, the inverse dynamics analysis has been done for obtaining the joint torques, the handrim forces and input/output powers. Results show that the output power by the forward. reverse propulsion is almost twice as much as that by conventional propulsion. Also, the new propulsion is expected to reduce the fatigues and injuries at arm joints by employing more muscle groups for movement. In conclusion, the forward. reverse propulsion can greatly improve the performances of manual wheelchairs by providing better mobility as well as by guaranteeing several advantages from a biomechanical viewpoint. Future development of a manual wheelchair optimized for the bi-directional propulsion will further improve the propulsion performances.

  • PDF

Measurement of Biomechanical Property of Chondrocyte (연골세포의 기계적 물성치 측정)

  • ;Daehwan Shin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.154-157
    • /
    • 2002
  • A cyto-indentation technique was used to obtain the biomechanical compressive compliance property of an chondrocyte cell attached to glass surface, which was tried to generate joint cartilage by tissue engineering. Piezo-transducer system and dual photo-diode system were used to conduct mechanical indentation through displacement-controlled testing and the measurement of corresponding cell reaction force. The Poisson's ratio of 0.37 was quoted from other report. The compressive compliance of chondrocyte, that was determined by elastic contact theory, was 1.38${\pm}$0.057 kPa. This value is 30% higher than that of MG63 osteoblast-like cell. The cyto-indentation technique employed in this study is so precise that it can quantify the biomechanical property of single cell.

  • PDF