• 제목/요약/키워드: biomechanical support

검색결과 46건 처리시간 0.02초

승차감 평가를 위한 수직 방향의 인체 진동 모델 개발 (Development of Vertical Biomechanical Model for Evaluating Ride Quality)

  • 조영건;박세진;윤용산
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

Biomechanical Complications : 파절과 나사풀림 (Biomechanical Complications : Fracture and Screw loosening)

  • 김태인
    • 대한치과의사협회지
    • /
    • 제53권5호
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

남자 해머던지기 시 각 회전 별 역학적 특성과 투사 요인 분석 (Analysis of Projectile Factors and Biomechanical Characteristics of Men's Hammer Throwing during Turning Phases)

  • 김태삼;류지선;이미숙;윤석훈;박재명
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.141-152
    • /
    • 2011
  • The purpose of this study was to investigate the projectile factors and biomechanical characteristics of men's hammer throwing during turning phases. Four national leveled athletes including Korea national record holder participated in this study. After full warm-up, each participant performed 6 trials of hammer throwing with their best. The best recorded trial was selected from each participant and they were analyzed for this study. Three-Dimensional motion analysis using a system of 5 video cameras at a sampling frequency 60Hz was performed for this study. As the number of turns increased, athletes revealed following characteristics. 1) The single and double support time decreased. 2) The rotation foot was closed to axis foot and it revealed greater medio-lateral displacement than that of horizontal one. 3) At the transition point from double support to single support, ball was in front of rotation foot so that not much angular velocity obtained. For the projectile factors, projectile angle did not show differences while projectile height and velocity revealed differences among the participants. It may indicated that each athlete has different fitness and skill level to resist centrifugal force which become larger as the number of turn increased.

맞춤형 착석장치를 통한 생체역학적 중재가 뇌성마비 아동의 마우스 클릭 동작에 미치는 영향 (Effect of Biomechanical Intervention based on Custom Seating System on Activities of Mouse Click for Children with Cerebral Palsy)

  • 정동훈
    • The Journal of Korean Physical Therapy
    • /
    • 제24권2호
    • /
    • pp.57-65
    • /
    • 2012
  • Purpose: This study was to investigate the effect of biomechanical intervention, based on the custom seating system on the activities of a mouse click for children with cerebral palsy. Methods: Thirteen children with cerebral palsy participated in this study. We compared reaction time and frequency for proper mouse click in the subject's typical position, in addition to an intervention position. The intervention position conformed to the principle and practice of research on promoting the upper-extremity movement and postural control. The intervention position was achieved through an external postural support, which was based on the custom seating system. Results: Reaction time and frequency for proper mouse click were moderately improved in the intervention position, compared with that of the typical position. There was a statistically significant difference between the typical position and that of the intervention position (p<0.05). Conclusion: Results provide evidence of the positive effects of functional seating on the activities of a mouse click for children with cerebral palsy.

허리지지를 위한 사무용 의자 개발 (Development of Office Chair for Lumbar Support)

  • 박수찬;이영신;김동진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.376-380
    • /
    • 2000
  • All chairs are uncomfortable in the long run, but some chairs become uncomfortable more rapidly than others, and in any particular chair, some people will be more uncomfortable than others. Comfort will depend upon the interaction of chair characteristics, user characteristics, and task characteristics. In this study, we intend to design the comfortable office chair by investigating the anthropometric and biomechanical aspects for Korean. Therefore, we determine the design dimensions using the analysis of anthropometric data. With these dimensions, we design the chair mechanism of which backrest reclines with increasing chair pan declination. This mechanism allows the back to get adequate support at the correct level for any backrest declination. Also, the lumbar support in the backrest descends with increasing backrest reclining. By using this chair, a considerably better sitting posture can be obtained, and uncomfortable feeling and back pain may be prevented.

  • PDF

노르딕워킹의 속도에 따른 하지 관절의 운동역학적인 분석 (Biomechanical Analysis of Lower Limbs on Speed of Nordic Walking)

  • 양대중;이용선;박승규;강정일;이준희;강양훈
    • 한국운동역학회지
    • /
    • 제21권3호
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, 26 normal subjects were studied to compare the biomechanical Analysis of Lower Limbs on Speed of Nordic Walking. The biomechanical variables were determined by performing three-dimensional gait analysis, and the measurements items were spatial and temporal parameters; vertical ground reaction force; and moments of the hip, knee, and ankle joints. The purpose of this study based on the speed of Nordic Walking to the vertical ground reaction force and joint moments of each were analyzed. Nordic Walking with poles while being whether this weight is reduced to load, not the improvement of muscle activity by identify Nordic walking is to allow efficient. The results of the analysis were follows. The spatial parameters of step length, stride length significantly increased with increase in velocity(p<0.001). The temporal parameters of step time, stride time, the duration of double support use, and the duration of single support use also significantly decreased with increase in velocity(p<0.001), but cadence significantly increased(p<0.01). Analysis of the changes in ground reaction force revealed that vertical ground reaction force significantly increased at the initial contact and the terminal stance and decreased at the mid stance with increase in velocity(p<0.001). Moments of the hip and knee joints significantly in creased with increase in velocity whereas that of the ankle joint did not. Gait analysis revealed that weight-bearing decreased and moments of the hip and knee joints increased with increase in velocity(p<0.01). The results of this study may help people perform Nordic walking efficiently and Nordic walking can be used in the gait training of people with an abnormal gait.

중량물 취급 보행 시 하지의 역학적 정렬에 따른 생체역학적 변화 분석 (Analysis of Biomechanical Changes According to Mechanical Alignment of the Lower Limbs when Gait with a Material Handling)

  • 이경일;이철갑;송한수;홍완기
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.183-190
    • /
    • 2015
  • Objective : Walking with a Material handling is an activity frequently undertaken by agricultural workers in Korea, due to the nature of their work. This study aimed to investigate differences in biomechanical variables according to the mechanical alignment of the lower limbs when walking with a heavy load, and to use this as basic data in the design of various working environments to reduce the skeletomuscular burden on the knee joint. Method : The study subjects comprised of 22 right-foot dominant adult men and women aged between 20 and 23 years. The subjects were divided into a varus or valgus group according to the mechanical alignment of the lower limb by using radiographic findings. The subjects walked without any load and with a load of 10%, 20%, or 30% of their body weight held in front of them. The Kwon3d XP program was used to calculate biomechanical variables. Results : The flexion/extension moment of the knee joint showed a decreasing trend with increased load, irrespective of the mechanical alignment of the lower limb, while the varus group did not show normal compensatory action when supported by one leg at the point of maximum vertical ground reaction force. In addition, in terms of the time taken, subjects showed no difficulties in one-foot support time up to 20%/BW, but at 30%/BW, despite individual differences, there was an increase in single limb. The increased load resulted in a decrease in the ratio of standing phase to ensure physical stability. The valgus group showed a trend of increasing the stability of their center of mass with increasing load, through higher braking power in the early standing phase. Conclusion : In conclusion, although there was no statistical difference in biomechanical variables according to the mechanical alignment of the lower limbs, the varus group showed a more irregular walking pattern with a Material handling than the valgus group, partially proving the association between lower limb alignment and walking with a Material handling.

Biomechanical Effectiveness of the Low-Dye Taping on Peak Plantar Pressure During Treadmill Walking Exercise in Subjects With Flexible Flatfoot

  • Lim, One-Bin;Kim, Jeong-Ah;Kwon, Oh-Yun;Yi, Chung-Hwi
    • 한국전문물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.41-51
    • /
    • 2015
  • The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.

Prevalence of Low Back Pain and Associated Risk Factors among Farmers in Jeju

  • Lee, Hyun Jung;Oh, Jung-Hwan;Yoo, Jeong Rae;Ko, Seo Young;Kang, Jeong Ho;Lee, Sung Kgun;Jeong, Wooseong;Seong, Gil Myeong;Kang, Chul Hoo;Song, Sung Wook
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.432-438
    • /
    • 2021
  • Background: We aimed to investigate the prevalence of low back pain (LBP) and its associated agricultural work-related, biomechanical factors among this population. Methods: We analyzed initial survey data from the Safety for Agricultural Injury of Farmers cohort study involving adult farmers in Jeju Island. The prevalence of LBP was calculated with associated factors. Results: In total, 1,209 participants were included in the analysis. The overall prevalence of LBP was 23.7%. Significant associations for LBP were the type of farming activity, length of farming career, prior agricultural injury within 1 year, and stress levels. Multivariate logistic regression analysis revealed three biomechanical factors significantly related to LBP: repetitive use of particular body parts; the inappropriate posture of the lower back and neck. Conclusions: Some occupational, and biomechanical risk factors contribute to LBP. Therefore, postural education, injury prevention education, and psychological support will be needed to prevent LBP.

이중 다발 전방십자인대 재건술 (Double-Bundle Anterior Cruciate Ligament Reconstruction)

  • 김재화;김정렬
    • 대한관절경학회지
    • /
    • 제15권2호
    • /
    • pp.132-139
    • /
    • 2011
  • 전방십자인대 손상 시 정상 전방십자인대의 해부학적 및 생역학적 기능을 회복시키기 위한 노력으로서 이중 다발 전방십자인대 재건술에 대한 관심이 증가하고 있다. 해부학적 및 생역학적 연구에 따르면 전내측 및 후외측 다발을 각각 재건하는 이중 다발 전방십자인대 재건술은 단일 다발 재건술에 비해 수술 후 안정성 및 임상적 측면에서 보다 나은 결과를 향상을 기대하지만, 이를 입증할 만한 충분한 관찰 기간을 가진 임상적 연구들이 매우 부족한 실정이다. 따라서 저자는 전방십자인대 이중 다발 재건술에 관련되어 최근까지 발표된 많은 문헌을 통해 이중 다발 술식의 발전 토대를 제공한 과학적 증거들을 정리하고 술식의 유용성 여부를 둘러싼 논란에 대해 알아보고자 한다.

  • PDF