• Title/Summary/Keyword: biomass technology

Search Result 1,249, Processing Time 0.025 seconds

Development of 3MWth Circulating Fluidized Bed Biomass Gasifier (3MWth급 순환유동층 바이오매스 가스화공정 개발)

  • Lee, Jeungwoo;Song, Jaehun;Lee, Dongyoon;Choi, Youngtai;Yang, Won;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.231-233
    • /
    • 2012
  • Circulating Fluidized Bed (CFB) is a technically and economically proven technology for boiler systems and large CFB coal boilers are making inroads into the domestic power boiler market. For biomass gasification, it is also considered as a very promising technology for commercial. Due to the lack of experiences of a large scale CFB gasifier, however, any large scale CFB gasifiers are hard to in Korea in spite of fast-growing demand of domestic market. In this study, a 3 $MW_{th}$ CFB gasifier was developed for biomass gasification. The CFB gasifier consists of interconnected fast and bubbling fluidized bed reactors including unique features for in-situ tar removal. Various numerical and experimental approaches will be presented such as basic modeling works, investigation of hydrodynamics with a cold model, computational particle fluid dynamics and experiments in the 3 MWth gasifier.

  • PDF

Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2004
  • Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.

Improved guggulsterone production from sugars, precursors, and morphactin in cell cultures of Commiphora wightii grown in shake flasks and a bioreactor

  • Mathur, Meeta;Ramawat, K.G.
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.133-136
    • /
    • 2008
  • Cell cultures of Commiphora wightii (Arnott.) Bhandari were grown in shake flasks and a bioreactor and an increase in guggulsterone accumulation up to $18{\mu}g\;l^{-1}$ was recorded in cells grown in the production medium containing a combination of sucrose:glucose (4% total), precursors (phenylalanine, pyruvic acid, xylose, and sodium acetate), morphactin, and 2iP. A yield of $10g\;l^{-1}$ biomass and ${\sim}200{\mu}g\;l^{-1}$ guggulsterone was recorded in a 3-l flask and in a 2-l stirred tank bioreactor compared with 6.6 g biomass and $67{\mu}g\;l^{-1}$ guggulsterone in 250-ml flasks. Increased vessel size was correlated with increased biomass and guggulsterone accumulation. 2iP alone was not effective for biomass and guggulsterone accumulation in cell cultures of C. wightii.

Utilization of Biomass Resources(I) - HPLC Analysis of Chemical Components for Utilization of Chestnut Inner Bark - (Biomass 자원의 활용 (I) - 율추의 유효이용을 위한 화학적 조성분의 HPLC 분석 -)

  • Kim, Yun-Geun;Jo, Jong-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.58-64
    • /
    • 2004
  • For the utilization of chestnut inner bark as forest biomass, the diethyl ether solubles of hot water extract from chestnut inner bark was analyzed by HPLC. Each peak was identified by comparing with retention time of standard regents and their purity from obtained UV spectrum by RI detector. Identified 6 compounds were gallic acid, 3,5-dihydroxybenzoic acid, 2,4,6-trihydroxybenzoic acid and protocatecualdehyde as phenolic acids and aldehyde, and catechin and epicatechin as flavonoids.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

KINETICS OF AUTOTROPHIC DENITRIFICATION FOR THE BIOFILM FORMED ON SULFUR PARTICLES : Evaluation of Molecular Technique on Monitoring Biomass Growth

  • Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.283-293
    • /
    • 2005
  • Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.

Enhancing the Absorption Properties of Biomass-based Superabsorbent Terpolymer

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.249-256
    • /
    • 2020
  • Superabsorbent polymers (SAPs) can absorb and retain ten to thousand times their dry mass of water because of their three-dimensional hydrophilic structures. Conventional SAPs are mainly composed of poly(acrylic acid sodium salt) derived from petrochemicals. The present work is aimed at limiting the use of the petrochemical component by replacing it with a biomass-based material. First, the core-SAP was prepared via the terpolymerization of itaconic acid, vinylsulfonic acid, and cellulose, and the optimum conditions in terms of material input ratio were determined. Following this, the core-SAP was surface-crosslinked by esterification with butane diol to improve its liquid permeability and absorbency under load (AUL). The liquid permeability was measured according to the amount of 0.9 wt.% NaCl solution passing between the swollen SAP particles under a given pressure, and the AUL was estimated from the weight of this solution absorbed under 0.3 psi pressure.

Combustion and thermal decomposition characteristics of brown coal and biomass

  • Kim, Hee Joon;Kasadani, Yuichi;Li, Liuyun;Shimizu, Tadaaki;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.373-377
    • /
    • 2012
  • Among the fossil fuels, the brown coal is a great deal of resources. However, it is hardly used due to the high moisture content and low calorific value. It has both the week points such as spontaneous combustion and high volatile content and the strong points such as the low-sulfur and low ash content. If we overcome these week points, the using amount of brown coal would be increased. Also, it is well known that biomass is one of the important primary renewable energy sources because of carbon neutral energy. Furthermore, the utilization of biomass has been more and more concerned with the depletion of fossil fuel sources as well as the global warming issues. Combustion and thermal decomposition of biomass is one of the more promising techniques among all alternatives proposed for the production of energy from biomass. In this study, combustion of brown coals and mushroom waste was done. Mass change of samples and emission of hydrocarbon components were measured. As the results, we obtained combustion rate constant. Also activation energy was calculated in char combustion step. Hydrocarbon components were more generated in low oxygen concentration than high. Emission amount of hydrocarbon components in mushroom waste was significantly increased comparing to brown coal.

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan;Rath, Swagat S.;Thirunavoukkarasu, Manikkannan;Panda, Prasanna K.;Mishra, Barada K.;Mohanty, Rama C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1260-1268
    • /
    • 2013
  • A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.