• Title/Summary/Keyword: biomass

Search Result 4,803, Processing Time 0.04 seconds

Temporal Variations in Seaweed Biomass and Coverage in Korean Coasts: Ongdo, Chungnam

  • Wan, Xiao Qin;Park, Hyang-Ha;Yoo, Hyun-Il;Choi, Han-Gil
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 2009
  • Temporal variations of seaweed biomass and coverage were seasonally examined at Ongdo in the Yellow Sea, Korea from August 2006 to April 2008. Average seaweed biomass was 245.79 g/$m^2$ in wet weight and coverage was 16.49% with seasonal variations from 13.97% in spring to 18.55% in autumn. Seaweeds were distributed across the shore gradient from the high intertidal to 10m depth in the subtidal zone. Biomass was always higher in the subtidal zone (310.24 g/$m^2$) than in the intertidal zone (181.35 g/$m^2$). Of total seaweed biomass, 76.52% (first year) and 80.32% (second year) occurred from the low intertidal zone, down to depth of 1 to 5m. Gelidium amansii had the highest importance value and biomass, and sub dominant species were Chondrus ocellatus and Chondria crassicaulis. Coarsely-branched seaweeds comprised the highest proportion of biomass (214.84 g/$m^2$, or 87.41% of the total biomss). Seasonal variations in algal biomass were largely explained by fluctuations in the biomass of coarsely-branched and thick-leathery forms. In conclusion, seaweed biomass of Ongdo shore was very low because of perennial G. amansii showing low biomass as compared to kelp or Sargassum spp. However, these results indicate Ongdo is good place to grow seaweeds because coarsely-branched form seaweeds including G. amansii are dominant at unpolluted and clean environment.

Notes on the biomass expansion factors of Quercus mongolica and Quercus variabilis forests in Korea

  • Li, Xiaodong;Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Rae-Hyun;Yi, Myong-Jong;Son, Yo-Whan
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Biomass expansion factors, which convert timber volume (or dry weight) to biomass, are used for estimating the forest biomass and accounting for the carbon budget at a regional or national scale. We estimated the biomass conversion and expansion factors (BCEF), biomass expansion factors (BEF), root to shoot ratio (R), and ecosystem biomass expansion factor (EBEF) for Quercus mongolica Fisch. and Quercus variabilis Bl. forests based on publications in Korea. The mean BCEF, BEF, and R for Q. mongolica was 1.0383 Mg/$m^3$ (N = 27; standard deviation [SD], 0.5515), 1.3572 (N = 27; SD, 0.1355), and 0.2017 (N = 32; SD, 0.0447), respectively. The mean BCEF, BEF, and R for Q. variabilis was 0.7164 Mg/$m^3$ (N = 17; SD, 0.3232), 1.2464 (N = 17; SD, 0.0823), and 0.1660 (N = 8; SD, 0.0632), respectively. The mean EBEF, as a simple method for estimating the ground vegetation biomass, was 1.0216 (N = 7; SD, 0.0232) for Q. mongolica forest ecosystems, and 1.0496 (N = 8; SD, 0.0725) for Q. variabilis forest ecosystems. The biomass expansion factor values in this study may be better estimates of forest biomass in Q. mongolica or Q. variabilis forests of Korea compared with the default values given by the Intergovernmental Panel on Climate Change (IPCC).

Analysis on the Trend of the Utilization of Woody Biomass - Production, supply, and practical use of woody biomass - (목질 바이오매스의 활용에 대한 동향 분석 - 목질 바이오매스의 생산·공급, 그리고 활용을 중심으로 -)

  • Ahn, Byeong-Il;Kim, Chul-Hwan;Lee, Ji-Young;Shim, Sung-Woong;Jo, Hu-Seung;Lee, Gyeong-Sun;Lee, Jee-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.32-42
    • /
    • 2012
  • Wood biomass including forest residues, waste wood, and construction residuals has been widely generated in Korea, but forest biomass from the National Forest Management Operation Project plays a big role in generating wood biomass. Unfortunately the promotion policy of woody energy organized by the Forest Service in Korea concentrates more on demand creation rather than on supply expansion. Therefore, in order to utilize insufficient wood resources effectively, it is greatly required to develop uses for maximizing their added value. In particular, more attention to the use of the second generation biomass has been paid in foreign countries because there is a threshold that the first generation biomass cannot produce enough biofuel without threatening food supplies and biodiversity. In Korea, wood pellets are regarded as the alternative clean fuels to oils and coals that emit green house gases into the atmosphere. However, using wood as pellet raw materials can not be an economic way because the value of wood disappears right after burning in the boiler in spite of its contribution to the decrease of carbon emission. Differently from wood pellets, kraft pulping process using woody biomass produces black liquor as a by-product which can be used to generate electricity, bioenergy and biochemicals through gasification. Thus, it can be more economical to make a torrefaction of lignocellulosic biomass such as low-quality wood and agricultural leftovers as raw materials of pellets.

Effects of Stand Age Classes on Biomass Expansion Factors and Stem Densities in Chamaecyparis obtusa Plantations (편백 조림지에서 영급이 바이오매스 확장계수와 줄기밀도에 미치는 영향)

  • Lee, Young Jin;Lee, Mi Hyang;Lee, Kyeong Hak;Son, Young Mo;Seo, Jeong Ho;Park, In Hyeop;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.50-54
    • /
    • 2006
  • Biomass expansion factors and stem density values were commonly used in converting stand volumes into total carbon stocks for the purpose of national inventories of greenhouse gas emissions and carbon sequestration. The objective of this study was to examine the influence of stand age classes on aboveground and total biomass expansion factors, and stem density values in Chamaecyparis obtusa species. A total of 25 representative sample trees based on the three different stand age classes were destructively sampled to measure green weights and dry weights of the major four(root, stem, branch and foliage) portions of C. obtusa species grown in Jangseung-gun of southern Korea. According to the results of this study, as stand age classes increase, total biomass expansion factors tended to be decreased with the ranges from 3.64 to 1.44, while the stem density values tended to be slightly increased with the ranges from $0.35(g/cm^3)$ to $0.44(g/cm^3)$. There were statistically significant differences in biomass expansion factors and stem density values between stand age classes, but became nearly constant after 30 years old for C. obtusa species. This information could be very useful to improve a national-scaled inventory of greenhouse gas emissions and carbon sequestration for the C. obtusa species by applying different biomass expansion factors and stem density values.

Estimation of Forest Biomass Arising from Forest Management Operation I - Estimation Based on Simulations - (숲가꾸기 사업에서의 산림 바이오매스 발생량 추정(제1보) - 시뮬레이션에 의한 발생량 전망 -)

  • Ahn, Byeong-Il;Lee, Kyun-Shik;Kim, Chul-Hwan;Lee, Ji-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.15-24
    • /
    • 2009
  • This paper estimates the nation wide amount of forest biomass arising from management operation for domestic forest based on the simulations that are composed of five scenarios for selecting the target area of thinning. In 2009, the forest biomass arising from thinning is estimated to be 6,642,174 $m^3$. The estimates of forest biomass in 2015 and 2018 are 5,935,140 $m^3$ and 5,682,538 $m^3$, respectively. Since the target forest for thinning policy is estimated to be decreasing, the biomass generated by thinning will decline too. The estimates of forest biomass can be used to induce more effective application of woody biomass rather than one-sided use such as raw materials for solid fuels including pellets and charcoals.

Effects of Biomass Fuel Conditions on Biomass Ossification (바이오매스 가스화장치를 이용한 합성가스 생산에 있어서 연료조건의 영향)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.63-71
    • /
    • 2006
  • A downdraft gasifier was made of stainless steel for biomass gasification. Internal reactor had a 300 mm diameter and 8 air intakes. Three thermocouples were installed to measure the temperature inside the reactor. Three different biomass fuels were provided in the experiments to find out the effects of fuel conditions on gasification processes; charcoals, woodchips, and mixture of woodchip and charcoals. Two different experiments were conducted fer charcoal experiments, small and larger sizes of charcoal fuels. It took about 10 minutes after ignition to generate combustible producer gas when charcoal was f9d, but 20 or more minutes for woodchips. When the gasification was stabilized, the highest temperature was observed just below the combustion zone. The air flow rate for woodchip experiment was provided at 25% of a stoichiometric requirement of combustion, which was within the range of typical air flow rate fer woody biomass gasification. Carbon monoxide concentrations were also within the values reported in the previous studies, ranging 20 to 30% depending on fuel types. It could be seen that fuel size and heating value were very important parameters in biomass gasification. These parameters should be taken into account in operating and designing biomass gasifiers.

Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review

  • Ahmad, Syahirah Faraheen Kabir;Ali, Umi Fazara Md;Isa, Khairuddin Md
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2020
  • In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.

Estimation Method of Potential Biomass Resources in Korea (국내 바이오매스 자원 잠재량 산정방법)

  • Lee, Joon-Pyo;Hwang, Kyung-Ran;Park, Soon-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.332-336
    • /
    • 2008
  • The resource potentials biomass resources of South Korea are estimated as Preliminary stage using relevant National statistics. Biomass resources possibly be collected, used and converted to bioenergy in Korea are forest biomass, agricultural residue, livestock manure and municipal solid wastes. The potential biomass resources are classifying into total potential, available potential and technically feasible biomass resources, Total potential biomass resources in Korea are estimated to be around 140million tons of oil equivalent (toe). Available potentials are estimated to be around 11million annually. The technically feasible biomass resources with current technologies are estimated to be 2.3million toe annually. These estimated values are the minimum of all potentials since they are all estimated from explicit statistics. Although actually there exist huge amount of biomass on the land as well as in the sea, potential resources for bioenergy are believed to be limited. The potentials are to be inclosed with the improvement of bioenergy technologies.

  • PDF

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

Higher Production of Biolipids from Botryococcus braunii using Pre-treated Solvent Extraction Methods (해양생물 Botryococcus braunii에서 유래한 바이오연료의 고급생산기술: 전처리 용매추출법)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.927-933
    • /
    • 2019
  • A lipid-enriched strain of Botryococcus braunii (UTEX 572) was cultivated in a semi-batch aeration tank to enhance biomass as well as to develop intracellular lipids and fatty acids. A 30 day period of incubation produced 1.39 g/L of biomass and 0.31 g/L of total lipids in the biomass. The grown biomass was pre-treated using several methods to extract the total lipid content efficiently: ultrasonication was found to yield the highest percentage of lipids-namely 19.8% per biomass. Direct heating of biomass in an autoclave also showed better performance than when using only conventional solvent extraction. To enhance the biomass harvest and lipid extraction efficiency, coagulation and flocculation steps were added to the extraction process. It is noteworthy that not only the solvent type but also the solvent/biomass ratio greatly affected efficiency. In addition, the moisture content of the harvested(wet) biomass affected the efficiency significantly. This study elucidated the need for future research on optimizing this extraction process.