• Title/Summary/Keyword: biomarkers of oxidative stress

Search Result 86, Processing Time 0.023 seconds

Co-administration of alcohol and combination antiretroviral therapy (cART) in male Sprague Dawley rats: a study on testicular morphology, oxidative and cytokines perturbations

  • Elna Owembabazi;Pilani Nkomozepi;Tanya Calvey;Ejikeme Felix Mbajiorgu
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.236-251
    • /
    • 2023
  • Alcohol consumption alongside combination antiretroviral therapy (cART) has attracted research interest, especially because of increasing male infertility. This study investigated the combined effects of alcohol and cART on testicular morphology, biomarkers of oxidative stress, inflammation, and apoptosis. Rats, weighing 330-370 g, were divided into four groups of six animals each; control, alcohol treated (A), cART, and alcohol plus cART treated (A+cART). Following 90 days treatment period, animals were euthanized, testis extracted, and routinely processed for histology and immunohistochemical analysis. Significantly decreased epithelial area fraction, increased luminal and connective tissue area fractions, and reduction of epithelial height and spermatocyte number, were recorded in the treated groups compared to control. Extensive seminiferous epithelial lesions including widened intercellular space, karyolysis, and sloughing of germinal epithelium were recorded in all the treated groups. Furthermore, upregulation of inducible nitric oxide synthase and 8-hydroxydeoxyguanosine, interleukin-6, and caspase 3 recorded in treated animals, was more significant in A+cART group. Also, the levels of interleukin-1β and tumor necrosis factor-α were more elevated in A and cART treated groups than in A+cART, while MDA was significantly elevated in cART and A+cART treated groups compared to control group. Altogether, the results indicate testicular toxicity of the treatments. It is concluded that consuming alcohol or cART induces oxidative stress, inflammation, and apoptosis in testis of rats, which lead to testicular structural and functional derangements, which are exacerbated when alcohol and cART are consumed concurrently. The result will invaluably assist clinicians in management of reproductive dysfunctions in male HIV/AIDS-alcoholic patients on cART.

Effect of different exercise intensities on biomarkers of oxidant-antioxidant balance, inflammation, and muscle damage

  • Roh, Hee-Tae;Ha, Hyoung Zoo;Woo, Jin-Hee;Lee, Yul-Hyo;Ko, Kangeun;Bae, Ju-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.778-786
    • /
    • 2018
  • We investigated the effect of different exercise intensities on biomarkers of oxidant-antioxidant balance, inflammation, and muscle damage. Eighteen healthy and untrained male subjects were enrolled.Subjects were randomly and equally assigned to a moderate-intensityexercise(MIE, $65%VO_2max$) group(n=9) or a high-intensity exercise(HIE, $85%VO_2max$) group(n=9).Blood samples were collectedimmediately pre-exercise, post-exercise, and 60min post-exercisetoexamine oxidant-antioxidant balance(d-ROMs; BAP), inflammation(CRP; fibrinogen), muscle damage(CK; LDH), and lactate. Serum d-ROMs and BAP levels were significantly increased post-exercise compared with pre-exercise levels in HIE group(p<0.05). Lactate levels were significantly increased post-exercise compared pre-exercise levels in both the MIE and HIE groups(p<0.05). In addition, post-exercise serum d-ROMs and plasma lactate levels were significantly higher in the HIE group than in the MIE group(p<0.05). These results suggest that although relatively high-intensity exercises may increase oxidative stress levels in the body, they do not produce inflammatory response and/or muscle damage.

Anti-fatigue activity of a mixture of seahorse (Hippocampus abdominalis) hydrolysate and red ginseng

  • Kang, Nalae;Kim, Seo-Young;Rho, Sum;Ko, Ju-Young;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.3.1-3.8
    • /
    • 2017
  • Seahorse, a syngnathidae fish, is one of the important organisms used in Chinese traditional medicine. Hippocampus abdominalis, a seahorse species successfully cultured in Korea, was validated for use in food by the Ministry of Food and Drug Safety in February 2016; however. the validation was restricted to 50% of the entire composition. Therefore, to use H. abdominalis as a food ingredient, H. abdominalis has to be prepared as a mixture by adding other materials. In this study, the effect of H. abdominalis on muscles was investigated to scientifically verify its potential bioactivity. In addition, the anti-fatigue activity of a mixture comprising H. abdominalis and red ginseng (RG) was evaluated to commercially utilize H. abdominalis in food industry. H. abdominalis was hydrolyzed using Alcalase, a protease, and the effect of H. abdominalis hydrolysate (HH) on the muscles was assessed in C2C12 myoblasts by measuring cell proliferation and glycogen content. In addition, the mixtures comprising HH and RG were prepared at different percentages of RG to HH (20, 30, 40, 50, 60, 70, and 80% RG), and the anti-fatigue activity of these mixtures against oxidative stress was assessed in C2C12 myoblasts. In C2C12 myoblasts, $H_2O_2$-induced oxidative stress caused a decrease in viability and physical fatigue-related biomarkers such as glycogen and ATP contents. However, treatment with RG and HH mixtures increased cell viability and the content of fatigue-related biomarkers. In particular, the 80% RG mixture showed an optimum effect on cell viability and ATP synthesis activity. In this study, all results indicated that HH had anti-fatigue activity at concentrations approved for use in food by the law in Korea. Especially, an 80% RG to HH mixture can be used in food for ameliorating fatigue.

Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats

  • Yang, Dong Kwon;Kang, Hyung-Sub
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.130-138
    • /
    • 2018
  • Quercetin and resveratrol are known to have beneficial effects on the diabetes and diabetic complication, however, the effects of combined treatment of these compounds on diabetes are not fully revealed. Therefore, the present study was designed to investigate the combined antidiabetic action of quercetin (QE) and resveratrol (RS) in streptozotocin (STZ)-induced diabetic rats. To test the effects of co-treated with these compounds on diabetes, serum glucose, insulin, lipid profiles, oxidative stress biomarkers, and ions were determined. Additionally, the activities of hepatic glucose metabolic enzymes and histological analyses of pancreatic tissues were evaluated. 50 male Sprague-Dawley rats were divided into five groups; normal control, 50 mg/kg STZ-induced diabetic, and three (30 mg/kg QE, 10 mg/kg RS, and combined) compound-treated diabetic groups. The elevated serum blood glucose levels, insulin levels, and dyslipidemia in diabetic rats were significantly improved by QE, RS, and combined treatments. Oxidative stress and tissue injury biomarkers were dramatically inhibited by these compounds. They also shown to improve the hematological parameters which were shown to the hyperlactatemia and ketoacidosis as main causes of diabetic complications. The compounds treatment maintained the activities of hepatic glucose metabolic enzymes and structure of pancreatic ${\beta}-cells$ from the diabetes, and it is noteworthy that cotreatment with QE and RS showed the most preventive effect on the diabetic rats. Therefore, our study suggests that cotreatment with QE and RS has beneficial effects against diabetes. We further suggest that cotreatment with QE and RS has the potential for use as an alternative therapeutic strategy for diabetes.

Malondialdehyde and 3-Nitrotyrosine in Exhaled Breath Condensate in Retired Elderly Coal Miners with Chronic Obstructive Pulmonary Disease

  • Lee, Jong Seong;Shin, Jae Hoon;Hwang, Ju-Hwan;Baek, Jin Ee;Choi, Byung-Soon
    • Safety and Health at Work
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Background: Chronic obstructive pulmonary disease (COPD) is an important cause of occupational mortality in miners exposed to coal mine dust. Although the inflammatory mediators involved in COPD have not been defined, many studies have shown that inflammatory mediators such as reactive oxygen and nitrogen species are involved in orchestrating the complex inflammatory process in COPD. Methods: To investigate the relevance of exhaled biomarkers of oxidative and nitrosative stress in participants with COPD, we determined the levels of hydrogen peroxide, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) in exhaled breath condensate (EBC) in 90 retired elderly coal miners (53 non-COPD and 37 COPD participants). Results: Mean levels of MDA (4.64 nMvs. 6.46 nM, p = 0.005) and 3-NT (3.51 nMvs. 5.50 nM, p = 0.039) in EBC were significantly higher in participants with COPD. The median level of MDA did show statistical difference among the COPD severities (p = 0.017), and the area under the receiver operating characteristic curve forMDA (0.67) for the diagnostic discrimination of COPD indicated the biomarker. The optimal cutoff values were 5.34 nM (64.9% sensitivity and 64.2% specificity) and 5.58 nM (62.2% sensitivity and 62.3% specificity) forMDA and 3-NT, respectively. The results suggest that high levels ofMDA and 3-NT in EBC are associated with COPD in retired elderly miners. Conclusion: These results showed that the elevated levels of EBC MDA and EBC 3-NT in individuals with COPD are biomarkers of oxidative or nitrosative stress.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

A biobehavioral theoretical framework based on the mechanism of cellular aging for nursing interventions to promote autonomic balance (자율신경균형 증진 간호중재를 위한 생행동적 이론적 기틀 구축: 세포노화 기전 기반으로)

  • Nahyun Kim;Jooyeon Park
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Purpose: This study reviewed the pathophysiological mechanisms of cellular aging caused by psychological stress and aimed to establish a biobehavioral theoretical framework for nursing interventions to promote autonomic balance based on these mechanisms. Methods: A comprehensive literature review was conducted. Results: A review of the literature showed that the stress response increases the secretion of catecholamines and glucocorticoids, resulting in a greater allostatic load. This load induces inflammatory reactions and oxidative stress, shortening telomere length and damaging mitochondrial DNA, which can lead to cellular aging. Based on this mechanism, a biobehavioral theoretical framework for nursing interventions was established. This framework focuses on delaying or inhibiting the cellular aging process by acting on the stress response stage and improving autonomic balance. Conclusion: According to the proposed biobehavioral theoretical framework, stress-relieving nursing interventions may act on the mechanism of cellular aging caused by stress responses. We believe that this framework could expand our understanding of the biobehavioral aspects of stress and would facilitate efforts to use biomarkers to evaluate the effectiveness of stress-related nursing interventions at the cellular level.

Antioxidant Effect of Filipendula glaberrima Nakai Extract in HepG2 Cells

  • Hong, Mijin;Hwang, Dahyun
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The imbalance of oxidative stress due to the excessive production of reactive oxygen species (ROS) leads to the pathogenesis of liver disease. To prevent this, the role of antioxidant mechanisms is important. Antioxidant studies have been reported on the Filipendula glaberrima Nakai. However, studies applied to HepG2 cells, which are human liver cells, have not yet been conducted. In this study, 70% ethanol extract of Filipendula glaberrima Nakai (FGE) was prepared and antioxidant activity was investigated. It was confirmed whether FGE pretreatment could reduce hydrogen peroxide-induced oxidative stress in HepG2 cells. The increase in gene expression of antioxidant biomarkers and the scavenging ability of ROS were measured, and Hoechst 33342 staining was used to know the inhibitory effect of the apoptosis. As a result, FGE significantly increased SOD (2.6-fold), CAT (4.4-fold), MT-1A (3.1-fold), GPx (4-fold), and G6PD (2.4)-fold compared to the H2O2-treated group. FGE directly inhibited ROS production from 13.4 to 3.6 (the fluorescence mean of DCF-DA) and also reduced apoptotic cells from 45% to 10% (Hoechst 33342 staining) at 2.5 ㎍/mL. These results demonstrate the excellent antioxidant activity of FGE and show that it can be used as a functional food to prevent liver disease.

Gene-Diet Interaction on Cancer Risk in Epidemiological Studies

  • Lee, Sang-Ah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.360-370
    • /
    • 2009
  • Genetic factors clearly play a role in carcinogenesis, but migrant studies provide unequivocal evidence that environmental factors are critical in defining cancer risk. Therefore, one may expect that the lower availability of substrate for biochemical reactions leads to more genetic changes in enzyme function; for example, most studies have indicated the variant MTHFR genotype 677TT is related to biomarkers, such as homocysteine concentrations or global DNA methylation particularly in a low folate diet. The modification of a phenotype related to a genotype, particularly by dietary habits, could support the notion that some of inconsistencies in findings from molecular epidemiologic studies could be due to differences in the populations studied and unaccounted underlying characteristics mediating the relationship between genetic polymorphisms and the actual phenotypes. Given the evidence that diet can modify cancer risk, gene-diet interactions in cancer etiology would be anticipated. However, much of the evidence in this area comes from observational epidemiology, which limits the causal inference. Thus, the investigation of these interactions is essential to gain a full understanding of the impact of genetic variation on health outcomes. This report reviews current approaches to gene-diet interactions in epidemiological studies. Characteristics of gene and dietary factors are divided into four categories: one carbon metabolism-related gene polymorphisms and dietary factors including folate, vitamin B group and methionines; oxidative stress-related gene polymorphisms and antioxidant nutrients including vegetable and fruit intake; carcinogen-metabolizing gene polymorphisms and meat intake including heterocyclic amins and polycyclic aromatic hydrocarbon; and other gene-diet interactive effect on cancer.

The Effect of Exposure to Mixed Organic Solvents on Lipid Peroxidation in Ship Building Painters

  • Park, Jun-Ho;Cha, Bong-Suk;Chang, Sei-Jin;Koh, Sang-Baek;Eom, Ae-Yong;Lee, Kang-Myeung;Jung, Min-Ye;Choi, Hong-Soon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.360-365
    • /
    • 2008
  • In the last several years, studies on the association of oxidative stress damage with exposure in the work place have been conducted. Xenobiotics create an imbalance of the homeostasis between oxidant molecules and antioxidant defense. By monitoring oxidative stress biomarkers, information was obtained on damages induced by oxidative stress and the toxicity of xenobiotics. In the present study, a Job Exposure Matrix (JEM) was constructed using the data from the Working Environment Measurement (WEM) of painters in the shipyard industry from the past 3 years to assess the exposure status. Additionally, by measuring the concentration of urinary malondialdehyde (MDA), the effect of lipid peroxidation was examined. The subjects consisted of 68 workers who were exposed to mixed organic solvents in the painting process and 25 non-exposure controls. The exposure indices of the exposure groups were significantly different (sprayer: 0.83, touchup: 0.54, assistant: 0.13, P<0.05). The urinary MDA concentration of the exposure group was 48.60${\pm}$ 39.23 ${\mu}mol$/mol creatinine, which was significantly higher than 18.03${\pm}$16.33 ${\mu}mol$/mol creatinine of the control group (P<0.05). From the multiple regression analysis of urinary MDA, the regression coefficient for exposure grade was statistically significant. In future studies, evaluation of the antioxidant levels of subjects should be performed simultaneously with quantitative exposure measurements.