• Title/Summary/Keyword: biological waste

Search Result 518, Processing Time 0.024 seconds

A Study on the Biological Hazards Exposure for Waste Handling Industries in Korea (국내 폐기물 취급업의 생물학적 인자 노출실태)

  • Park, Hyunhee;Park, Hae Dong;Lee, Inseop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.265-275
    • /
    • 2012
  • Objectives: The aim of this study was to investigate the distribution patterns and exposure concentrations of biological hazards in waste handling industries. Methods: We selected 3 recyclable waste sorting plants(RWS), 2 food recycling plants(FR), 1 landfill area(LA) and 1 waste incineration plant(WI). Total airborne bacteria and fungi were measured with single stage impactor and gelatin filters. Endotoxin and glucan were measured with polycarbonate filters in total and respirable dust. Results: The geometric mean of airborne bacterial concentration was the highest in FR($3,273CFU/m^3$), followed by LA, RWS, and WI as 1,334, 934, and $860CFU/m^3$. The fungal concentrations were 6,031, 5,052, 3,307, and $713CFU/m^3$ in RWS, WI, FR, and LA, respectively. By process, WI pit showed the highest concentrations of bacteria, fungi, and endotoxin, followed by inside of bulldozer in LA. The indoor to outdoor ratios of bacteria, fungi, endotoxin and glucan were 2.3, 4.0, 2.3, and 5.0 in RWS, 29.5, 4.9, 7.6, and 5.0 in FR, 5.3, 8.7, 26.8, and 9.5 in WI, respectively. Conclusions: We found that biological hazards, specifically bacteria in FR, fungi in RWS and endotoxin in WI pit and bulldozer at LA, should be controlled to prevent worker's respiratory diseases.

Advanced Biological Treatment of Industrial Wastewater using Food Waste Leachate as an External Carbon Source: Full-Scale Experiment (음식물쓰레기 탈리액을 이용한 산업폐수의 생물학적 고도처리 실증실험)

  • Lee, Byeongcheol;Ahn, Johwan;Lee, Junghun;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.461-466
    • /
    • 2011
  • The feasibility of utilizing food waste leachate as an external carbon source was tested to enhance biological nutrient removal from an industrial wastewater with an average flow rate of $164,800m^3/d$ and a low carbon/nitrogen ratio of 2.8. A considerable improvement in the removal of nitrogen and phosphorus was observed when a certain amount of the leachate, ranging from 70 to $142m^3/d$, was supplemented to the biological industrial wastewater treatment process. The addition of the leachate led to an increase in the BOD/N ratio (4.5) and the removal efficiency of nutritents from 29.7% to 71.7% for nitrogen and from 34.8% to 65.6% for phosphorus. However, an excessive dose of the leachate that significantly exceeded $120m^3/d$ caused serious operational problems, like oil-layer formation in the grit chamber and scum layer in the primary clarifier. Thus, an supplement of food waste leachate at a dose acceptable to an existing facilities can be a practical and effective means to enhance the nutrient removal from industrial wastewater and to dispose of the food waste leachate.

Preparation of Polyester Using Waste Ethylene Glycol Generated from the Wastepaper Pretreatment Process (Ethylene glycol을 사용한 폐지의 전처리공정에서 발생된 폐액으로부터 polyester 제조)

  • Lee, Dong-Hun;Kim, Chang-Joon;Kim, Sung-Bae
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • This research was to investigate the polyester preparation using waste ethylene glycol (EG) generated from the wastepaper pretreatment process. Waste EG was obtained from using EG five times repeatedly in the pretreatment of wastepaper. The hydroxyl value of the waste EG was 441 mg KOH/g and its composition was 0.68% cellulose, 6.5% hemicellulose, 6.1% lignin, and 86.7% EG. Maleic acid was used as carboxylic acid. The effect of reaction temperature and time except carboxyl group/hydroxyl group ratio on the crosslinkage of the prepared polyester was marginal. Citric acid, lithium hydroxide and dicumyl peroxide were used as additive or catalyst to enhance the crosslinkage of polyester. Among them, 10% of citric acid was found to be most effective. The crosslinkage was 86% when the polyester was prepared at an optimum condition such as $130^{\circ}C$ and 15 minutes, 1.5 of C/H ratio, and 10% of citric acid, and its insoluble percentage in boiling water for 6 hours was 47%. The weight loss of the prepared polyester was approximately 40% when it was buried in damp soil for 5 months, indicating that it is readily biodegradable. This results can provide some information for future development of wastepaper pretreatment by organic solvent.

Feasibility of Reclaimed Wastewater and Waste Nutrient Solution for Crop Production in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Awad, Yasser M.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • BACKGROUND: Development of water recycle technologies is important for human health and sustainable agriculture. However, few studies have been conducted to examine the purification methods or the water quality of reclaimed wastewater in Korea. METHODS AND RESULTS: In this study, the different wastewaters including reclaimed wastewater and waste nutrient solution (NS) were evaluated. The changes of water quality in reclaimed wastewater and NS were determined using ultraviolet (UV) treatment and sand filtration with charcoal. Our results showed that one of the most critical limitations of reusing wastewater was the presence of harmful pathogens that possibly cause human health risks. CONCLUSION(s): This study suggests that the application of UV treatment or combined with sand filtration on reclaimed wastewater and waste NS effectively removes the total coliform bacteria below the harmful or acceptable level. For future studies, a long-term field monitoring after applying reclaimed wastewater or NS is needed.

A study on influencing factors of AT4 experiment for the assessment of biological stability of landfilled waste (매립폐기물의 호기성 안정화 평가를 위한 AT4 실험의 영향인자에 관한 연구)

  • Yoon, Seok-Pyo;Kim, Hyung-Wook;Lee, Nam-Hoon;Kim, Kyung;Lee, Byung-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, as a tool of evaluating biological stability of landfilled waste, influencing factors of $AT_4$ method was studied for standardizing the method. As influencing factors, initial lag time, exchanging period of $CO_2$ absorbing agent, and interval of pressure measurement were discussed, and also the relationship between content of dried food waste and $AT_4$ value were compared. Considering heterogeneity of landfilled waste and statistical error range of measurement, authors suggest that the criteria of stabilized landfill waste is $10mg\;O_2/g\;DM$ by $AT_4$ method.

Application of Membranes for Biological Waste Gas Treatment Processes (생물학적 폐가스 처리공정 내 멤브레인 활용)

  • Lee, Sang-hun
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • The use of membranes for MBRWG (Membrane Bioreactor for Waste Gas) treatment can provide highly selective separation of a waste gas stream followed by effective biological removal. MBRWG have several potential advantages, among which the most distinctive one is separation of gas and liquid phases at each side of membrane potentially allowing the optimal biomass control toward effective biodegradation of target gases as well as biofilm activation. This advantage becomes especially favorable for removal of hydrophobic toxic gases, such as xylene, by MBRWG systems, because the mass transfer, the toxicity, and thereby the biodegradation of hydrophobic gas treatment requires sensitive handling of liquid stream and water control near biofilm. Among various membranes for MBRWG treatment, PDMS-hollow fiber membranes provide the high gas mass transfer. Despite lower specific surface areas, capillary type membranes are also applied current MBRWG studies. In addition to the main application of membranes as biofilm supporter in MBRWG systems, there can be another application of membranes in a posterior process for removal of residual gases or dusts emitted from conventional biological waste gas treatment processes.

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.