• Title/Summary/Keyword: biological reduction

Search Result 1,236, Processing Time 0.029 seconds

Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato

  • Dashti, N.H.;Montasser, M.S.;Ali, N.Y.;Bhardwaj, R.G.;Smith, D.L.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2007
  • To overcome the problem of the yield reduction due to the viral satellite mediated protection, a culture mix of three nitrogen-fixing bacteria species of the genus Azospirillum (A. brasilienses N040, A. brasilienses SP7, and A. lipoferum MRB16), and one strain of cyanobacteria (Anabena oryzae Fritsch) were utilized as biofertilizer mixture in both greenhouse and field experiments. When protected plants were treated with biofertilizer mixtures, the fruit yield of biofertilized plants increased by 48% and 40% in a greenhouse and field experiment, respectively, compared to untreated plants inoculated with the protective viral strain alone. Polyacrylamide gel electrophoresis (PAGE) analysis of total nucleic acid (TNA) extracts revealed that biofertilization did not affect the accumulation of the viral satellite RNA (CARNA 5) that is required for plant protection against other destructive viral strains of CMV. The yield increment was a good compensation for the yield loss caused by the use of the protective viral strain associated with CARNA 5.

Regulation of Ethylene Emission in Tomato (Lycopersicon esculentum Mill.) and Red Pepper (Capsicum annuum L.) Inoculated with ACC Deaminase Producing Methylobacterium spp.

  • Yim, Woo-Jong;Woo, Sung-Man;Kim, Ki-Yoon;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Improvement of plant growth by Methylotrophic bacteria can be influenced through alterations in growth modulating enzymes or hormones, especially by decreasing ethylene levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or by production of indole-3-acetic acid (IAA). In this study, the effect of seven strains of Methylobacterium on seedling ethylene emission of tomato and red pepper plants was evaluated under greenhouse condition. Ethylene emission was lowest in Methylobacterium oryzae CBMB20 inoculated tomato plants and CBMB110 inoculated red pepper plants at 47 days after sowing (DAS). However, at 58 DAS all inoculated plants showed almost similar pattern of ethylene emission. Methylobacterium inoculated tomato and red pepper plants showed significantly less ethylene emission compared to control. Our results demonstrated that Methylobacterium spp. inoculation promotes plant growth due to the reduction of ethylene emission and therefore can be potentially used in sustainable agriculture production systems.

Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era

  • Kim, Mincheol;Lee, Ki-Hyun;Yoon, Seok-Whan;Kim, Bong-Soo;Chun, Jongsik;Yi, Hana
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.102-113
    • /
    • 2013
  • Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.

Inhibition of LSD1 phosphorylation alleviates colitis symptoms induced by dextran sulfate sodium

  • Oh, Chaeyoon;Jeong, Jiyeong;Oh, Se Kyu;Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.385-390
    • /
    • 2020
  • Inflammatory Bowel Disease is caused by an acute or chronic dysfunction of the mucosal inflammatory system in the intestinal tract. In line with the results of our previous study, wherein we found that the PKCα-LSD1-NF-κB signaling plays a critical role in the prolonged activation of the inflammatory response, we aimed to investigate the effect of signaling on colitis in the present study. Lsd1 S112A knock-in (Lsd1SA/SA) mice, harboring a deficiency in phosphorylation by PKCα, exhibited less severe colitis symptoms and a relatively intact colonic epithelial lining in dextran sulfate sodium (DSS)-induced colitis models. Additionally, a reduction in pro-inflammatory gene expression and immune cell recruitment into damaged colon tissues in Lsd1SA/SA mice was observed upon DSS administration. Furthermore, LSD1 inhibition alleviated colitis symptoms and reduced colonic inflammatory responses. Both LSD1 phosphorylation and its activity jointly play a role in the progression of DSS-induced colitis. Therefore, the inhibition of LSD1 activity could potentially protect against the colonic inflammatory response.

Biological Control and Plant-Growth Promotion by Bacillus Strains from Milk

  • Nautiyal Chandra Shekhar;Mehta Sangeeta;Singh Harikesh Bahadur
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.184-192
    • /
    • 2006
  • Six-hundred bacterial strains from human milk and milk from Sahiwal cows, Holstein Friesian cows, and buffaloes were screened for their ability to suppress phytopathogenic fungi under in vitro conditions. A consortium of 3 strains, viz., Bacillus lentimorbus B-30486 (B-30486), B. subtilis B-30487 (B-30487), and B. lentimorbus B-30488 (B-30488), isolated from Sahiwal cow milk resulted in better biological control and plant-growth promotion than single-strain treatments. For commercial-scale production of a bioinoculant, the solid-state fermentation of sugarcane agro-industrial residues, i.e., molasses, press mud, and spent wash, using the consortium of B-30486, B-30487, and B-30488, resulted in a value-added product, useful for enhancing plant growth. The application of the consortium to sugarcane fields infested with Fusarium moniliforme and Colletotrichum falcatum resulted in a reduction of mortality and significantly higher (P=0.05) plant height, number of tillers, and cane girth when compared with the control. Furthermore, under field conditions, the treatment of sugarcane with the consortium resulted in significantly (P=0.05) greater plant growth compared with nonbacterized plants. Accordingly, this is the first report on the effective use of bacteria isolated from milk for biological control and enhancing plant growth under field conditions. Furthormore, a solid-state fermentation technology was developed that facilitates the economic utilization of agro-industrial residues for environmental conservation and improving plant and soil health.

Effect of Sodium Bytyrate on Glycosylation of Recombinant Erythropoietin

  • Chung, Bo-Sup;Jeong, Yeon-Tae;Chang, Kern-hee;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1087-1092
    • /
    • 2001
  • The effect of Sodium Butyrate (NaBu) on the N-linked oligosaccharide structure of Erythropoietin (EPO) was investigated. Recombinant human EPO was produced by CHO cells grown in an $MEM{\alpha}$ medium with or without 5 mM NaBu, and purified from the culture supernatants using a heparin-sepharose affinity column and immunoaffinity column. The N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were then labeled with a fluorescent dye, 2-aminobenzamide, and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of a GU (glucose unit) vague. A glycan analysis by HPLC showed that the most significant characteristic effect of NaBu was a reduction in the proportion of glycans with Sri-and tetrasialylated oligodaccharides from $21.30\%$ (tri-) and $14.86\%$ (tetra-) in the control cultures (without NaBu) to $8.72\%$ (tri-) and $1.25\%$ (tetra-) in the NaBu-treated cultures, respectively. It was also found that the proportion of asialo-glycan increased from $12.54\%\;to\;23.6\%$ when treated with NaBu.

  • PDF

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun;Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Lee, Jaewoo;Kwon, Hyeokpil;Choo, Kwang-Ho;Lee, Jung-Kee;Jang, Jae Young;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.573-583
    • /
    • 2017
  • Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

Application of Ozone Oxidation to Reduce the Biological Treatment Time of Petrochemical Wastewater (석유화학 폐수의 생물학적 처리시간 단축을 위한 오존 산화의 적용)

  • Hong, Eun-Sik;Kim, Hyun-Suk;Lee, Sang-Hee;Chung, Jin-Suk;Shin, Eun-Woo;Ryu, Keun-Garp;Yoo, Ik-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.573-576
    • /
    • 2006
  • The efficacy of integrated ozone oxidation-biodegradation treatment was examined in the treatment of petrochemical wastewater with a special focus on the overall treatment time. When raw wastewater with chemical oxygen demand(COD) of 70-80 mg/L was oxidized by ozone, approximately 20% of initial COD was removed in less than 1.5 min at a dosing rate of 400 mg $O_3/L{\cdot}h $. No further decrease in COD was observed for the extended ozone treatment up to 30 min. Biological treatment alone showed a rapid reduction of COD to 40-50 mg/L, subsequently resulting in the decreased rate of COD removal. Pre-treatment by ozone before biological treatment did not significantly affect the specific rate of COD removal in a biological treatment. When ozone oxidation followed biological treatment, the extent of COD removal by ozone oxidation was greater compared to that of biologically-treated wastewater for a shorter time. Taken together, it was decided that the biological treatment time could be reduced if the treatment processes of concern will be properly arranged.

Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

  • Ryu, Hojin;Park, Hoon;Suh, Dong-Sang;Jung, Gun Ho;Park, Kyungseok;Lee, Byung Dae
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.215-219
    • /
    • 2014
  • Background: Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods: The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was inoculated to ginseng plants and the incidence and severity of disease was assessed to examine the efficacy of the bacterium as a biological control against C. panacicola. Results: Inoculation of Panax ginseng plants with B. subtilis significantly suppressed the number of disease lesions of C. panacicola and was as effective as the chemical fungicide iminoctadine tris(albesilate). The antifungal activity of B. subtilis against C. panacicola was observed on a co-culture medium. Interestingly, treatment with B. subtilis did not significantly affect the diameter of the lesions, suggesting that the mechanism of protection was through the reduction in the incidence of infection related to the initial events of the infection cycle, including penetration and infection via spore germination and appressorium formation rather than by the inhibition of invasive growth after infection. Conclusion: Our results suggest that B. subtilis HK-CSM-1 can be used as an effective and ecologically friendly biological control agent for anthracnose in P. ginseng.

Comparison of chemical and biological control efficiency of two-spotted spider mites in strawberry greenhouses (딸기온실에서 점박이응애의 화학적방제와 생물적방제 효율 비교)

  • Jeong, Hyo Jin;Kang, Ju-wan;Lee, Hyun Seung;Jang, Hojung;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.39-45
    • /
    • 2021
  • To establish the environmentally friendly biological control of two-spotted spider mites (TSSM), Tetranychus urticae, in exported strawberry greenhouses, the TSSM density reduction efficiency of chemical and biological control measures was compared in commercial, exported strawberry greenhouses. In the biological control greenhouse, only Phytoseiulus persimilis, a natural enemy of TSSM, was released, and the chemical control greenhouse was only sprayed with commercial chemical pesticides. The density of each developmental stage of TSSM was higher in the chemical control greenhouse than in the biological control greenhouse. The management costs were lower for the biological control greenhouse than the chemical control greenhouse. These results suggest that it is possible to effectively control TSSM using P. pesrsimilis in exported strawberry greenhouses.