• Title/Summary/Keyword: biological pathways

Search Result 698, Processing Time 0.029 seconds

Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

  • Laodim, Thawee;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.508-518
    • /
    • 2019
  • Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

Application of Structural Equation Models to Genome-wide Association Analysis

  • Kim, Ji-Young;Namkung, Jung-Hyun;Lee, Seung-Mook;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.150-158
    • /
    • 2010
  • Genome-wise association studies (GWASs) have become popular approaches to identify genetic variants associated with human biological traits. In this study, we applied Structural Equation Models (SEMs) in order to model complex relationships between genetic networks and traits as risk factors. SEMs allow us to achieve a better understanding of biological mechanisms through identifying greater numbers of genes and pathways that are associated with a set of traits and the relationship among them. For efficient SEM analysis for GWASs, we developed a procedure, comprised of four stages. In the first stage, we conducted single-SNP analysis using regression models, where age, sex, and recruited area were included as adjusting covariates. In the second stage, Fisher's combination test was conducted for each gene to detect significant genes using p-values obtained from the single-SNP analysis. In the third stage, Fisher's exact test was adopted to determine which biological pathways were enriched with significant SNPs. Finally, based on a pathway that was associated with the four traits in common, a SEM was fit to model a causal relationship among the genetic factors and traits. We applied our SEM model to GWAS data with four central obesity related traits: suprailiac and subscapular measures for upper body fat, BMI, and hypertension. Study subjects were collected from two Korean cohort regions. After quality control, 327,872 SNPs for 8842 individuals were included in the analysis. After comparing two SEMs, we concluded that suprailiac and subscapular measures may indirectly affect hypertension susceptibility by influencing BMI. In conclusion, our analysis demonstrates that SEMs provide a better understanding of biological mechanisms by identifying greater numbers of genes and pathways.

The Mechanisms of Atypical Antipsychotics-Induced Weight Gain and Related Pharmacogenetics (비전형적 항정신병약물에 의한 체중증가의 기전 및 약리유전학)

  • Lee, Joon-Noh;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.10 no.1
    • /
    • pp.3-19
    • /
    • 2003
  • The use of atypical antipsychotics is limited by occurrence of adverse reactions such as weight gain, despite of their benefits. This article provides a comprehensive review and discussion of the most significant findings regarding obesity-related pathways and integrates these with the known mechanism of atypical antipsychotic action. The focus of this article is primarily on the genetics of obesity related pathways that may be disrupted by atypical antipsychotics. This review also discussed weight gain, hyperglycemia or occurrence of diabetes while being treated with atypical antipsychotics from the point of view of pharmacogenetics. Pharmacogenetic research seeks to uncover genetic factors that will help clinicians identify the best treatment strategies for their patients. It will aid clinically in the prediction of response and side effects, such as antipsychotic-induced weight gain, and minimize the current "trial and error" approach to prescribing in the near future. This article also presents the genetics of both central and peripheral pathways putatively involved in antipsychotic-induced weight gain while providing a comprehensive review of the obesity literature. This article also review obesity related candidate molecules which may be disrupted during atypical antipsychotic drug treatment.

  • PDF

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

Identifying literature-based significant genes and discovering novel drug indications on PPI network

  • Park, Minseok;Jang, Giup;Lee, Taekeon;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • New drug development is time-consuming and costly. Hence, it is necessary to repurpose old drugs for finding new indication. We suggest the way that repurposing old drug using massive literature data and biological network. We supposed a disease-drug relationship can be available if signal pathways of the relationship include significant genes identified in literature data. This research is composed of three steps-identifying significant gene using co-occurrence in literature; analyzing the shortest path on biological network; and scoring a relationship with comparison between the significant genes and the shortest paths. Based on literatures, we identify significant genes based on the co-occurrence frequency between a gene and disease. With the network that include weight as possibility of interaction between genes, we use shortest paths on the network as signal pathways. We perform comparing genes that identified as significant gene and included on signal pathways, calculating the scores and then identifying the candidate drugs. With this processes, we show the drugs having new possibility of drug repurposing and the use of our method as the new method of drug repurposing.

Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans

  • Sangsin Lee;Seung Geun Song;Doo Hyun Chung
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.36.1-36.16
    • /
    • 2023
  • Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.