• 제목/요약/키워드: biological pathways

검색결과 703건 처리시간 0.023초

뇌유래신경영양인자와 뇌 신경가소성: 비약물적 개입 (Brain-Derived Neurotrophic Factor and Brain Plasticity: Non-Pharmacological Intervention)

  • 김낙영;임현국
    • 생물정신의학
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2023
  • Many psychiatric disorders are associated with brain functional dysfunctions and neuronal degeneration. According to the research so far, enhanced brain plasticity reduces neurodegeneration and recovers neuronal damage. Brain-derived neurotrophic factor (BDNF) is one of the most extensively studied neurotrophins in the mammalian brain that plays major roles in neuronal survival, development, growth, and maintenance of neurons in brain circuits related to emotion and cognitive function. Also, BDNF plays an important role in brain plasticity, influencing dendritic spines in the hippocampus neurogenesis. Changes in neurogenesis and dendritic density can improve psychiatric symptoms and cognitive functions. BDNF has potent effects on brain plasticity through biochemical mechanisms, cellular signal pathways, and epigenetic changes. There are pharmacological and non-pharmacological interventions to increase the expression of BDNF and enhance brain plasticity. Non-pharmacological interventions such as physical exercise, nutritional change, environmental enrichment, and neuromodulation have biological mechanisms that increase the expression of BDNF and brain plasticity. Non-pharmacological interventions are cost-effective and safe ways to improve psychiatric symptoms.

Review on Application of Biosystem Modeling: Introducing 3 Model-based Approaches in Studying Ca Metabolism

  • Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.258-264
    • /
    • 2012
  • Purpose: This review aims at introducing 3 modeling approaches classified into 3 categories based on the purpose (estimation or prediction), structure (linear or non-linear) and phase (steady-state or dynamic-state); 1) statistical approaches, 2) kinetic modeling and 3) mechanistic modeling. We hope that this review can be a useful guide in the model-based approach of calcium metabolism as well as illustrates an application of engineering tools in studying biosystems. Background: The meaning of biosystems has been expanded, including agricultural/food system as well as biological systems like genes, cells and metabolisms. This expansion has required a useful tool for assessing the biosystems and modeling has arisen as a method that satisfies the current inquiry. To suit for the flow of the era, examining the system which is a little bit far from the traditional biosystems may be interesting issue, which can enlarge our insights and provide new ideas for prospective biosystem-researches. Herein, calcium metabolic models reviewed as an example of application of modeling approaches into the biosystems. Review: Calcium is an essential nutrient widely involved in animal and human metabolism including bone mineralization and signaling pathways. For this reason, the calcium metabolic system has been studied in various research fields of academia and industries. To study calcium metabolism, model-based system analyses have been utilized according to the purpose, subject characteristics, metabolic sites of interest, and experimental design. Either individual metabolic pathways or a whole homeostasis has been modeled in a number of studies.

Analysis of Gene Expression in 4,4'-Methylenedianiline-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Yoon, Hea-Jin;Lim, Jung-Sun;Park, Han-Jin;Cho, Jae-Woo;Kwon, Myung-Sang;Yoon, Seok-Joo
    • Toxicological Research
    • /
    • 제25권2호
    • /
    • pp.85-92
    • /
    • 2009
  • 4,4'-Methylenedianiline (MDA) is an aromatic amine that is widely used in the industrial synthetic process. Genotoxic MDA forms DNA adducts in the liver and is known to induce liver damage in human and rats. To elucidate the molecular mechanisms associated with MDA-induced hepatotoxicity, we have identified genes differentially expressed by microarray approach. BALB/c male mice were treated once daily with MDA (20 mg/kg) up to 7 days via intraperitoneal injection (i.p.) and hepatic damages were revealed by histopathological observation and elevation of serum marker enzymes such as AST, ALT, ALP, cholesterol, DBIL, and TBIL. Microarray analysis showed that 952 genes were differentially expressed in the liver of MDA-treated mice and their biological functions and canonical pathways were further analyzed using Ingenuity Pathways Analysis (IPA). Toxicological functional analysis showed that genes related to hepatotoxicity such hyperplasia/hyperproliferation (Timp1), necrosis/cell death (Cd14, Mt1f, Timp1, and Pmaip1), hemorrhaging (Mt1f), cholestasis (Akr1c3, Hpx, and Slc10a2), and inflammation (Cd14 and Hpx) were differentially expressed in MDA-treated group. This gene expression profiling should be useful for elucidating the genetic events associated with aromatic amine-induced hepatotoxicity and for discovering the potential biomarkers for hepatotoxicity.

Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

  • Cho, Jae Yong
    • Journal of Gastric Cancer
    • /
    • 제13권3호
    • /
    • pp.129-135
    • /
    • 2013
  • Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.

Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma

  • Zaid, Khaled Waleed;Chantiri, Mansour;Bassit, Ghassan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.927-932
    • /
    • 2016
  • Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-${\beta}$ superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein-2 (rhBMP-2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma.

In silico analysis of MeJA-induced comparative transcriptomes in Brassica oleraceae L. var. capitata

  • Lee, Ok Ran;Kim, Dae-Soo
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.189-203
    • /
    • 2016
  • Brassica oleraceae var capitata is a member of the Brassicaceae family and is widely used as an horticultural crop. In the present study, transcriptome analysis of B. oleraceae L. var capitata was done for the first time using eight-week old seedlings treated with $50{\mu}m$ MeJA, versus mock-treated samples. The complete transcripts for both samples were obtained using the GS-FLX sequencer. Overall, we obtained 275,570 and 266,457 reads from seedlings treated with or without $50{\mu}m$ MeJA, respectively. All the obtained reads were annotated using biological databases and functionally classified using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomics (KEGG). By using GO analyses, putative transcripts were examined in terms of biotic and abiotic stresses, cellular component organization, biogenesis, and secondary metabolic processes. The KEGG pathways for most of the transcripts were involved in carbohydrate metabolism, energy metabolism, and secondary metabolite synthesis. In order to double the sequenced data, we randomly chose two putative genes involved in terpene biosynthetic pathways and studied their transcript patterns under MeJA treatment. This study will provide us a platform to further characterize the genes in B. oleracea var capitata.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

Molecular Genetics of Emericella nidulans Sexual Development

  • Han, Kap-Hoon
    • Mycobiology
    • /
    • 제37권3호
    • /
    • pp.171-182
    • /
    • 2009
  • Many aspergilli that belongs to ascomycetes have sexuality. In a homothallic or self-fertile fungus, a number of fruiting bodies or cleistothecia are formed in a thallus grown from a single haploid conidia or ascospores. Genome-sequencing project revealed that two mating genes (MAT) encoding the regulatory proteins that are necessary for controlling partner recognition in heterothallic fungi were conserved in most aspergilli. The MAT gene products in some self-fertile species were not required for recognition of mating partner at pheromone-signaling stage but required at later stages of sexual development. Various environmental factors such as nutritional status, culture conditions and several stresses, influence the decision or progression of sexual reproduction. A large number of genes are expected to be involved in sexual development of Emericella nidulans (anamorph: Aspergillus nidulans), a genetic and biological model organism in aspergilli. The sexual development process can be grouped into several development stages, including the decision of sexual reproductive cycle, mating process, growth of fruiting body, karyogamy followed by meiosis, and sporulation process. Complicated regulatory networks, such as signal transduction pathways and gene expression controls, may work in each stage and stage-to-stage linkages. In this review, the components joining in the regulatory pathways of sexual development, although they constitute only a small part of the whole regulatory networks, are briefly mentioned. Some of them control sexual development positively and some do negatively. Regarding the difficulties for studying sexual differentiation compare to asexual one, recent progresses in molecular genetics of E. nidulans enlarge the boundaries of understanding sexual development in the non-fertile species as well as in fertile fungi.

Effects of Panax ginseng, zearalenol, and estradiol on sperm function

  • Gray, Sandra L.;Lackey, Brett R.;Boone, William R.
    • Journal of Ginseng Research
    • /
    • 제40권3호
    • /
    • pp.251-259
    • /
    • 2016
  • Background: Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. Methods: The affinity of these compounds for estrogen receptor (ER)-alpha and beta ($ER{\alpha}$ and $ER{\beta}$)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. Results: Zearalenol-but not estradiol ($E_2$)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone ($P_4$) and ionophore. Conclusion: Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including $P_4$, $E_2$, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.

Novel biological strategies to enhance the radiation therapeutic ratio

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • 제36권3호
    • /
    • pp.172-181
    • /
    • 2018
  • Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.