• 제목/요약/키워드: biological parameters

검색결과 1,278건 처리시간 0.029초

Predicting Successful Defibrillation in Ventricular Fibrillation using Wave Analysis and Neuro-fuzzy

  • Shin Jae-Woo;Lee Hyun-Sook;Hwang Sung-Oh;Yoon Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • 제27권2호
    • /
    • pp.47-52
    • /
    • 2006
  • The purpose of this study was to predict successful defibrillation in ventricular fibrillation using parameters extracted by wave analysis method and neuro-fuzzy. Total 15 dogs were tested for predicting successful defibrillation. Feature parameters were extracted for return of spontaneous circulation (ROSC) and non-ROSC by wave analysis method, and these parameters are an irregularity factor, spectral moments, mean power of level-crossing spectrum, and mean of alpha-significant value. Additionally, two parameters by analyzing method of frequency were extracted into a mean of power spectrum and a mean frequency. Then extracted parameters were analyzed in which parameters result to have high performance of discriminating ROSC and non-ROSC by a statistical method of t-test. The average of sensitivity and specificity were 62.5% and 75.0%, respectively. The average of positive predictive factor and negative predictive factor were 61.2% and 75.8%, respectively.

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권1호
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • 제21권5호
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Influence of Reaction Parameters on Biocrude Production from Lipid-extracted Microalgae using Hydrothermal Liquefaction (열수액화를 이용한 미세조류 추출잔사로부터 바이오원유 제조에 대한 반응인자의 영향)

  • Ryu, Young-Jin;Shin, Hee-Yong;Yang, Ji-Hyun;Lee, Yunwoo;Jeong, Injae;Park, Hanwool;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • 제9권2호
    • /
    • pp.35-42
    • /
    • 2017
  • Hydrothermal liquefaction of lipid-extracted Tetraselmis sp. feedstock containing 80 wt.% water was conducted in a batch reactor at different temperatures (300, 325, and $350^{\circ}C$) and reaction times (5, 10, 20, 40, and 60 min). The biocrude yield, elemental composition and higher heating value obtained at various reaction conditions were used to predict the optimum conditions for maximizing energy recovery of biocrude with good quality. A maximum energy recovery of 67.6% was obtained at $325^{\circ}C$ and 40 min with a high energy density of 31.8 MJ/kg and lower contents of nitrogen and oxygen. Results showed that reaction conditions of $325^{\circ}C$, 40 min was most suitable for maximizing energy recovery while at the same time achieving improved quality of biocrude.

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

Monitoring and Controlling Uniformity of Plasma Emission Intensity for IGZO Sputtering Process (IGZO박막 증착 공정에서 플라즈마 방출광 모니터링 및 플라즈마 균일도 제어)

  • Choi, Jinwoo;Hwang, Sang Hyuk;Kim, Woo Jae;Shin, Gi Won;Kwon, Heui Tae;Jo, Tae Hoon;Woo, Won Gyun;Cha, Sung Duk;An, Byung Chul;Park, Wan Woo;Do, Jae Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • 제15권4호
    • /
    • pp.27-32
    • /
    • 2016
  • In recent years, various researches have been conducted to improve process yields in accordance with miniaturization of semiconductor. APC(Advanced Process Control) is considered one of the methods to increase in process yields. APC is a process control technology that maintains optimal process conditions and improves the reliability of results by controlling and formulating the relationship among the various process parameters and results. We built up an optical diagnostic system with a three-channel spectrometer. The system detects signals those represent the changes of specific emission peaks intensity versus each reference and converts it into MFC control signals to get back the changes to the reference state. Controlling the MFC continues until the specific peak intensity changes into the normal state. Through this device, we tested a APC automatically responding to process changes during the plasma process. We could control gas flow while sputtering process on going and improve uniformity of plasma intensity with this system. Finally, we have got results those enhance the plasma intensity non-uniformity to 7.7% from 15.5%. Also, found unexpected oxygen flow what is estimated to be come out from IGZO target.

Characterization and Genomic Analysis of Novel Bacteriophage ΦCS01 Targeting Cronobacter sakazakii

  • Kim, Gyeong-Hwuii;Kim, Jaegon;Kim, Ki-Hwan;Lee, Jin-Sun;Lee, Na-Gyeong;Lim, Tae-Hyun;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.696-703
    • /
    • 2019
  • Cronobacter sakazakii is an opportunistic pathogen causing serious infections in neonates. In this study, a bacteriophage ${\Phi}CS01$, which infects C. sakazakii, was isolated from swine feces and its morphology, growth parameters, and genomic analysis were investigated. Transmission electron microscopy revealed that ${\Phi}CS01$ has a spherical head and is 65.74 nm in diameter with a 98.75 nm contracted tail, suggesting that it belongs to the family Myoviridae. The major viral proteins are approximately 71 kDa and 64 kDa in size. The latent period of ${\Phi}CS01$ was shown to be 60 min, and the burst size was 90.7 pfu (plaque-forming units)/infected cell. Bacteriophage ${\Phi}CS01$ was stable at $4-60^{\circ}C$ for 1 h and lost infectivity after 1 h of heating at $70^{\circ}C$. Infectivity remained unaffected at pH 4-9 for 2 h, while the bacteriophage was inactivated at pH <3 or >10. The double-stranded ${\Phi}CS01$ DNA genome consists of 48,195 base pairs, with 75 predicted open reading frames. Phylogenetic analysis is closely related to that of the previously reported C. sakazakii phage ESP2949-1. The newly isolated ${\Phi}CS01$ shows infectivity in the host bacterium C. sakazakii, indicating that it may be a promising alternative to antibacterial agents for the removal of C. sakazakii from powdered infant formulas.

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

Characteristics of Morphological and Physiological Changes during the Autolysis Process of Saccharomyces cerevisiae FX-2

  • Li, Xiao;Shi, Xiaodan;Zou, Man;Luo, Yudi;Tan, Yali;Wu, Yexu;Chen, Lin;Li, Pei
    • Microbiology and Biotechnology Letters
    • /
    • 제43권3호
    • /
    • pp.249-258
    • /
    • 2015
  • In this paper, the autolysis process of Saccharomyces cerevisiae FX-2 (S. cerevisiae FX-2) via, a variety of endogenous enzyme, was investigated systematically by analyzing changes in physicochemical parameters in autolysate, surface morphology and the internal structure of the yeast cells. As an explicit conclusion, the arisen autolysis depended on the pH and the optimal pH was found to be 5.5. Based on the experimental data and the characteristics of mycelia morphology, a hypothesis is put forward that simple proteins in yeast vacuolar are firstly degraded for utilization, and then more membrane-bound proteins are hydrolyzed to release hydrolytic enzymes, which arouse an enzymatic reaction to induce the collapse of the cell wall into the cytoplasm.