• Title/Summary/Keyword: biological model

Search Result 2,631, Processing Time 0.031 seconds

Identification and Control of Nonlinear System Using Dynamic Neural Model with State Parameter Representation (상태변수 표현을 가진 동적 신경망을 이용한 비선형 시스템의 식별과 제어)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.157-160
    • /
    • 1995
  • Neural networks potentially offer a general framework for modeling and control of nonlinear systems. The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some, dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M.Gupta and D.H.Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF

Estimation of Relative Potency with the Parallel-Line Model

  • Lee, Tae-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.633-640
    • /
    • 2012
  • Biological methods are described for the assay of certain substances and preparations whose potency cannot be adequately assured by chemical or physical analysis. The principle applied through these assays is of a comparison with a standard preparation to determine how much of the examined substance produces the same biological effects as a given quantity (the Unit) of the standard preparation. In these dilution assays, to estimate the relative potencies of the unknown preparations to the standard preparations, it is necessary to compare dose-response relationships of standard and unknown preparations. The dose-response relationship in the dilution assay is non-linear and sigmoid when a wide range of doses is applied. The parallel line model (applied to the dose region with the steepest slope) is used to estimate the relative potency. In this paper, the statistical theory in the parallel line model is explained with an application to a dilution assay data. The parallel line method is implemented in a SAS program and is available at the author's homepage(http://cafe.daum.net/go.analysis).

Mechanical Properties of Rice Plants Under the Transverse Loading -Creep and Recovery Behavior- (측방향하중(側方向荷重)에 의한 벼줄기의 역학적특성(力學的特性)에 관한 연구(硏究)(II) -크리이프 및 회복 거동-)

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • The mechanical properties of biological materials depend on numerous factors. The majority of these relationships are still unknown today, especially with regard to their quantitative characteristics. The reason is that biological materials constitute biomechanical systems of very complex construction, whose behavior cannot be characterized by simple physical constants, as for example can that of engineering materials. The objectives of this investigation were to determine the compression creep and recovery properties of rice stalks at various levels of applied load The compression creep and recovery behavior of the rice stalk could be predicted precisely by rheological model which approached closely to the measured values. But the coefficients of the Burgers recovery model were different from those of the creep model. The Steady state creep behavior occurred at the higher level of force and the logarithmic creep behavior occurred at the lower level of force. The mechanical model being expected the creep behavior in relation with the level of applied load, which was well explained that the rice stalk might be visco-elastic material.

  • PDF

A Study on the Sorting Effect in Aquafarm (양식선별효과에 관한 연구)

  • EH, Youn-Yang;Song, Dong-Hyo
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.4
    • /
    • pp.19-36
    • /
    • 2018
  • Overstock in aquaculture is a matter of concern in aquaculture management. To sort fish based on fingerling size in case of overstocking is an important problem in aquaculture farm. This study aims to determine the amount of fry overstock and sorting time in aquaculture farm. This study builds a mathematical model that finds the value of decision variables to optimize objective function summing up the fingerling purchasing cost, aquaculture farm operating cost and feeding cost under mortality and farming period constraints. The proposed mathematical model involves following biological and economical variables and coefficients: (1) number of fingerlings, (2) sorting time, (3) fish growth rate and variation, (4) mortality, (5) price of a fry (6) feeding cost, and (7) possible sorting periods. Numerical simulation is presented herein. The objective of numerical simulation is to provide decision makers to analyse and comprehend the proposed model. When extensive biological data about growth function of fry becomes available, the proposed model can be widely applicable to real aquaculture farms.

Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD) (전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석)

  • Nam, Chongyong;Lee, Yongkyu;Park, Gunhee;Lee, Gunhak;Lee, Won Bo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.133-138
    • /
    • 2018
  • Safety management has become even more important because of the safety and environmental issues that have arisen since the 2000s. However, the safety study requires many empirical data, so there are many limitations. In the case of pipe safety, simulation programs exist, but it is difficult to get data about the pipe internal erosion of the pipe. In this study, the erosion rate of the pipe elbow was simulated using computational fluid dynamics (CFD). Also, the failure period of the pipe was calculated by the limit state function using erosion rate. In the case of CFD pipe, a sample which is actually operated in Yeosu industrial complex was used, and the geometry and mesh formation were rationalized in terms of typical fluid dynamics simulations. Using the Discrete Phase Model (DPM) and the corrosion model, the erosion rate ($3.09227mm{\cdot}yr^{-1}$) was obtained from CFD simulations. As a result of applying the erosion rate to the limit state function, we obtained the pipe failure period value, 14.2 years to trigger a leak and 28.2 years to trigger a burst. Through these processes, we concluded that pipe erosion is one of the major failure modes. In addition to the results, this study has significance for suggesting the methodology of the pipe safety study.

Melanogenesis Inhibitory Activity of Epicatechin-3-O-Gallate Isolated from Polygonum amphibium L.

  • Lee, Young Kyung;Hwang, Buyng Su;Hwang, Yong;Lee, Seung Young;Oh, Young Taek;Kim, Chul Hwan;Nam, Hyeon Ju;Jeong, Yong Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • This study aimed to investigate the melanogenesis inhibitory activity of epicatechin-3-O-gallate (ECG) isolated from Polygonum amphibium L. ECG was isolated from the ethanol extract of P. amphibium L, and its chemical structure was determined using spectroscopic methods such as LC-ESI-MS, 1D-NMR, and UV spectroscopy. ECG inhibited the melanogenesis of B16F10 cells in a dose-dependent manner. Particularly, it decreased the melanin content by 27.4% at 200 µM concentration, compared with the control, in B16F10 cells, without causing cytotoxicity. It is noteworthy that the expression of three key proteins, including tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), involved in melanogenesis, is significantly inhibited by ECG. The ECG isolated in this study caused the inhibition of body pigmentation and tyrosinase activity in vivo in the zebrafish model. These results suggest that the ECG isolated from P. amphibium L. is an effective anti-melanogenesis agent.

Response Surface Methodological Approach for Optimization of Enzymatic Synthesis of Sorbitan Methacrylate

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Kim, Hae-Sung;Lee, Woo-Tai;Sunwoo, Chang-Shin;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.511-516
    • /
    • 2005
  • Sorbitan methacrylate was synthesized from sorbitan dehydrated from D-sorbitol using an immobilized lipase. To optimize the enzymatic synthesis of sorbitan methacrylate, response surface methodology was applied to determine the effects of five-level-four-factors and their reciprocal interactions on sorbitan methacrylate biosynthesis. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, enzyme amount and substrate molar ratio. A statistical model predicted that the highest conversion yield of sorbitan methacrylate was 100%, at the following optimized reaction conditions: a reaction temperature of 43.06 $^{\circ}C$, a reaction time of 164.25 mins., an enzyme amount of 7.47%, and a substrate molar ratio of 3.98:1. Using these optimal factor values under experimental conditions in four independent replicates, the average conversion yield reached 98.7%${\pm}$1.2% and was well within the value predicted by the model.

  • PDF