• Title/Summary/Keyword: biological model

Search Result 2,655, Processing Time 0.027 seconds

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

The Immunological Position of Fibroblastic Reticular Cells Derived From Lymph Node Stroma (림프절 스트로마 유래 Fibroblastic Reticular Cell의 면역학적 위치)

  • Jong-Hwan Lee
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.356-364
    • /
    • 2024
  • Lymph nodes (LNs) are crucial sites where immune responses are initiated to combat invading pathogens in the body. LNs are organized into distinctive compartments by stromal cells. Stromal cell subsets constitute special niches supporting the trafficking, activation, differentiation, and crosstalk of immune cells in LNs. Fibroblastic reticular cells (FRC) are a type of stromal cell that form the three-dimensional structure networks of the T cell-rich zones in LNs, providing guidance paths for immigrating T lymphocytes. FRCs imprint immune responses by supporting LN architecture, recruiting immune cells, coordinating immune cell crosstalk, and presenting antigens. During inflammation, FRCs exert both spatial and molecular regulation on immune cells through their topological and secretory responses, thereby steering immune responses. Here, we propose a model in which FRCs regulate immune responses through a three-part scheme: setting up, supporting, or suppressing immune responses. FRCs engage in bidirectional interactions that enhance T cell biological efficiency. In addition, FRCs have profound effects on the innate immune response through phagocytosis. Thus, FRCs in LNs act as gatekeepers of immune responses. Overall, this study aims to highlight the emerging roles of FRCs in controlling both innate and adaptive immunity. This collaborative feedback loop mediated by FRCs may help maintain tissue function during inflammatory responses.

Pulpitis pain relief by modulating sodium channels in trigeminal ganglia (삼차신경절의 나트륨 채널 조절을 통한 치수염 통증 완화 효과)

  • Kyung-Hee Lee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Objectives: The pulp is the center of the tooth containing nerves and blood vessels. The condition in which the pulp becomes inflamed due to caries or periodontitis is called pulpitis. Pulpitis is a difficult-to-treat disease and causes peripheral nerve tissue changes and severe pain; however, the relationship between neuronal activity and voltage-gated sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG) during pulpitis has not been well studied. In this study, we found that experimentally induced pulpitis activates Nav1.7 expression in the periphery, leading to neuronal overexpression in the TG. Thus, we sought to identify ways to regulate this process. Methods: Acute pulpitis was induced in rat maxillary molars by treating the pulp with allyl isothiocyanate (AITC). Three days later, in vivo optical imaging was used to record and compare neural activities in the TG. Western blotting was used to identify molecular changes in terms of the expression of extracellular signal-regulated kinase (ERK), c-Fos, transient receptor potential ankyrin 1 (TRPA1), and collapsin response mediator protein-2 (CRMP2) in the brain stem. Results: The results confirmed the neurological changes in the TGs of the pulpitis model, and histological and molecular biological evidence confirmed that increased Nav1.7 expression induced by pulpitis leads to pain. Furthermore, selective inhibition of Nav1.7 resulted in changes in neural activity, suggesting that pulpitis induces increased Nav1.7 expression, and that effective control of Nav1.7 could potentially reduce pain. Conclusions: The inhibition of overexpressed Nav1.7 channels may modulate nociceptive signal processing in the brain and effectively control pain associated with pulpitis.

Anti-obesity effects of Glycyrrhiza uralensis ethanol extract on the inhibition of 3T3-L1 adipocyte differentiation in high-fat diet-induced C57BL/6J mice (감초 주정추출물의 3T3-L1 지방세포 분화 억제 및 고지방 식이로 유도된 C57BL/6J 마우스에 대한 항비만 효과)

  • Seon Kyeong Park;Jangho Lee;Soo Hyun Park;Yu Geon Lee
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.716-728
    • /
    • 2023
  • The anti-adipogenic activity of Glycyrrhiza uralensis was investigated by examining the effects of its ethanol extract (GUE) on a mouse model with a high-fat diet (HFD) and 3T3-L1 preadipocytes during adipocyte differentiation. GUE administration for eight weeks significantly reduced weight gain in mice fed an HFD. GUE effectively inhibited 3T3-L1 preadipocyte differentiation and lipid droplet accumulation. This inhibitory effect is associated with the downregulation of key adipogenic regulators, including PPARγ and C/EBPα, and the modulation of adipose metabolism regulators, such as Fasn and Fabp4. LC-Q-TOF-MS analysis identified twelve phenolic and flavonoid compounds, including liquiritigenin and licorice saponin, in the GUE. These findings demonstrate that the anti-obesity effect of the GUE is attributed to the biological activity of its phenolic and flavonoid compounds. Therefore, the GUE has potential anti-obesity activity. Moreover, further studies on the isolation of bioactive components from the GUE and the investigation of the underlying molecular mechanisms of the GUE are required to establish its efficacy in metabolic disorders, including obesity.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF

Development and Adult Life Span of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) Fed on the Melon Aphid, Aphis gossypii Glover or the Green Peach Aphid, Myzus persicae($S\"{u}lzer$) (Homoptera: Aphididae) (목화진딧물(Aphis gossypii)과 복숭아혹진딧물(Myzus persicae) (Homoptera: Aphididae)을 먹이로 한 진디혹파리[Aphidoletes aphidimyza (Rondani)] (Diptera: Cecidomyiidae)의 발육 및 성충수명)

  • Kim Tae-Heung;Kim Ji-Soo
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.297-304
    • /
    • 2004
  • The development of Aphidoletes aphidimyza, an aphidophagous gall midge, was studied at various constant temperatures ranging from 15 to $35^{\circ}C$, with $65{\pm}5\%$ RH, and a photo-period of 16L:8D. When A. aphidimyra was fed either on Aphis gossypii or Myzus persicae, it took 43.9 and 44.5 days, respectively, to develop from egg to pupa at $15^{\circ}C$, whereas at $25^{\circ}C$, 14.3 and 15.8 days. The developmental zero was 10.7 and $10.0^{\circ}C$, respectively, while the effective accumuative temperatures were 210.8 and 245.5 day-degrees. The nonlinear shape of temperature-dependent development, shown by A. aphidimyza when fed on either species of the aphids, was well described by the modified Sharpe and DeMichele model. When distribution model of completion time of development for each growth stage was expressed as physiological age and fitted to the Weibull fuction, the completion time of development gradually shortened from egg to larva, and to pupa. In addition, the coefficient of determination $r^2$ ranged between 0.86-0.93 and 0.85-0.94, respectively providing a good approximation of cumulative developmental rates. The life span of adult was 8.7 and 9.2 days at $15^{\circ}C$, and 3.1 and 2.7 days at $30^{\circ}C$, respectively. Egg incubation period was relatively short at $35^{\circ}C$ but hatchability was less than $50\%$ and the mortality of the larva at $35^{\circ}C$ reached $100\%$. At $30^{\circ}C$, the time of development lengthened and the adult longevity was short suggesting ill effect of high temperatures. Even though the life span of adults at $15^{\circ}C$ was relatively long, none moved freely in the rearing cage and no oviposition occurred. Accordingly, in case A. aphidimyza is adopted to suppress phytophagus aphid populations, it could be applicable to cropping systems with ambient temperatures above $20^{\circ}C$ and below $30^{\circ}C$. Within this range, A. aphidimyza adults was observed to be active and oviposit fully.

Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages (다채를 기주로 양배추가루진딧물[Brevicoryne brassicae (Linnaeus)]의 생명표 분석)

  • Kim, So Hyung;Kim, Kwang-Ho;Hwang, Chang-Yeon;Lim, Ju-Rak;Kim, Kang-Hyeok;Jeon, Sung-Wook
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Life table analysis and temperature-dependent development experiments were conducted to understand the biological characteristics of the cabbage aphid, Brevicoryne brassicae (Linnaeus) on detached Tah Tsai Chinese cabbage (Brassica campestris var. narinosa) leaves at seven constant temperatures (15, 18, 21, 24, 27, 30 and $33{\pm}1^{\circ}C$; $65{\pm}5%$ RH; 16L:8D). Mortality was lowest at $24^{\circ}C$ with 18% and 0% at $1^{st}{\sim}2^{nd}$ and $3^{rd}{\sim}4^{th}$ nymphal stages, respectively. The developmental period of $1^{st}{\sim}2^{nd}$ nymphal stage was 8.4 days at $18^{\circ}C$, and it decreased with increasing temperature. The developmental period of the $3^{rd}{\sim}4^{th}$ nymphal stage was 6.7 days at $18^{\circ}C$. The lower threshold temperature calculated using a linear model was $7.8^{\circ}C$, and the effective accumulative temperature was 120.1DD. Adult longevity was 14.9 days at $21^{\circ}C$, and total fecundity was observed 58.5 at $24^{\circ}C$. According to the life table, the net reproduction rate was 47.5 at $24^{\circ}C$, and the intrinsic rate of increase and the finite rate of increase were 0.36 and 1.43, respectively, at $27^{\circ}C$. The doubling time was 1.95d at $27^{\circ}C$, and mean generation time was 7.43d at $30^{\circ}C$.