• Title/Summary/Keyword: biological direction

Search Result 342, Processing Time 0.035 seconds

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

The Effect of S130A Mutant of pharaonis Halorhodopsin on Ability of Chloride Binding and Photocycle

  • Sato, Maki;Kikukawa, Takashi;Araiso, Tsunehisa;Okita, Hirotaka;Shimono, Kazumi;Kamo, Naoki;Demura, Makoto;Nitta, Katsutoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.308-310
    • /
    • 2002
  • Bacteriorhodopsin (bR) and halorhodopsin (hR), which exist in the membrane of Halobacterium salinarum, are light-driven ion pumps. In spite of high similarity of primary and tertiary structures between bR and hR, these membrane proteins transport different ions, proton and chloride, in the opposite direction. From alignment of the amino acid sequences, Thr-89 of bR is homologous to Ser-l15 of hR from Halobacterium salinarum (shR). X-ray structure of shR has revealed that OH group of this residue directly interacts with CI$\^$-/ Thus, Ser-lI5 of shR is expected to play an important role in CI$\^$-/ binding and transport. In this study, we expressed wild type hR from Natronobacterium pharaonis (PhR) and Sl30A, which corresponds to Ser-l15 of shR, in E. coli in order to clarify binding affinity of chloride ion and photocycle reactions. From the titration with CI$\^$-/, affinity of Sl30A became quite lower than that of WT (WT 6 mM, Sl30A 89 mM). Furthermore, from the flash photolysis with pulse laser of λ$\_$max/ at 532 nm, the reaction rate of SI30A from 0 intermediate to hR ground state was found to become apparently slower than that of WT. The singular value decomposition (SVD) and global fitting analyses of the photocycles were performed to identify all photointermediates and determine the reaction rates.

  • PDF

A Review Study of Biosensors applicable to Wellness Wear (웰니스 의류에 적용 가능한 바이오센서 동향 연구)

  • Kim, Hyo-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.231-243
    • /
    • 2017
  • This paper provides a review of the electrical sensing biosensors and examine research cases of biosensors based on clothing and textiels. A biosensor which can measure bio-signals is a device that senses the physical and chemical characteristics of biological materials by using biological sensing materials. Therefore, wellness wear that is closely integrated with the user's real life will play an important role in achieving U-Health. The biosensors' unique feature which can be differentiated from the existing sensors is it's using of selective reactions and binding of biological substances. The electrical sensing biosensors are very small in size due to the processing of electrical signals, which can be used to create ubiquitous. Therefore, it is necessary to study electrical sensing biosensors that are easy to miniaturize to develop wellness wear. This paper describes the electrical sensing biosensor (an electrochemical method nanowire/carbon nanotube FET method) in detail. Finally, the future direction of biosensors to be applied to wellness wear is suggested.

Alu sequences and molecular features (Alu 서열과 분자생물학적 특징)

  • Park Eun-Sil;Hong Kyung-Won;Kim Heui-Soo
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1028-1039
    • /
    • 2004
  • During the past 65 million years, Alu sequences have been amplified through RNA-polymerase IIIderived transcripts, and have reached the copy number of about 1.4 million in primate genomes. They are the largest family among mobile genetic elements in human genome and consist of ten percent of the human genome. Alu sequences are thought to be functionless genetically, but many researchers have proved new function and disease implication. Alu elements make the genome insertional mutation, Alu-mediated recombination events, and unexpected splicing site and change gene structures, protein sequences, splicing motifs and expression patterns. In this review, the structure and origin of Alu, consensus sequences of Alu subfamilies, evolution and distribution of Alu, and their related diseases were described. We also indicated new research direction of Alu elements in relation to evolution and disease.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Neurocriminology : A Review on Aggression and Criminal Behaviors Using Brain Imaging (신경범죄학 : 뇌영상을 활용한 공격성 및 범죄 행동의 이해)

  • Yu, Si Young;Choi, Yejee;Kim, Sangjoon;Jeong, Hyeonseok S.;Ma, Jiyoung;Jeong, Eujin;Moon, Sohyeon;Kim, Nicole Y.;Kang, Ilhyang;Kim, Young Hoon;Shin, Kyung-Shik;Kim, Jieun E.
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.2
    • /
    • pp.57-62
    • /
    • 2016
  • Criminology has been understood within a sociological framework until the emergence of neurocriminology, which describes, understands and predicts criminal behaviors from a neurobiological point of view. Not only using biological factors including genes and hormones to understand criminal behaviors, but also using neuroimaging techniques, the field of neurocriminology aims to delve into both structural and functional differences in the brain of individuals with aggression, antisocial personalities, and even the criminals. Various studies have been conducted based on this idea, however, there still are limitations for the knowledge from these studies to be used in the court. In this review article, we provide an overview of the various research in neurocriminology, and provide insight into the future direction and implication of the field.

Research trends on the Saam's Acupuncture Method in Korea (국내에서 보고된 사암침법에 대한 연구 동향)

  • Han, Chang-Hyun;Shin, Mi-Suk;Park, Sun-Hee;Choi, Sun-Mi
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.2 s.17
    • /
    • pp.15-30
    • /
    • 2006
  • Background The Saam's Acupuncture Method is one of the most widely adopted techniques used by clinicians and educational institutions in Korea today. It is originated in the 17th century from a Buddhist monk known as 'Saam'. The reports on the bibliography. biological responses and therapeutic effects of Saam's Acupuncture method were done but trends on the Saam's Acupuncture method were insufficient. Objectives This study aims to review the bibliography, biological responses and therapeutic effects of Saam's Acupuncture. In the process, this review will grasp trends in this field of studies and will direct further researches into the right direction. Method We searched and investigated th journals supplied by Korean Oriental Medical Society and Je-Han Oriental Medical Academy homepage etc. with the key world 'Saam(사암), jung-geuk(정격), seung-gyuk(승격), han-geuk(한격), yul-geuk(열격)'. Fifty journals were chosen for the review. Result 1. The proportion of basic researches was 10%. The biological responses of Saam's Acupuncture method reveal on blood pressure, regional cerebral blood flow (rCBF). 2. The proportion of literature researches was 48%. The application of Saam's Acupuncture method was many. 3. The proportion of case reports was 26%. Saam's Acupuncture method is applied in the various disease. 4. The proportion of clinical studies was 16%. Clinical studies were increased after the year 2000. Conclusions To elevated quality of studies, we need well-designed experimental methods, efficient secure of experimental groups, appropriate statistical verification, accumulations of knowledges about data research.

  • PDF

Intercellular transport across pit-connections in the filamentous red alga Griffithsia monilis

  • Kim, Gwang Hoon;Nagasato, Chikako;Kwak, Minseok;Lee, Ji Woong;Hong, Chan Young;Klochkova, Tatyana A.;Motomura, Taizo
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.75-84
    • /
    • 2022
  • Intercellular nutrient and signal transduction are essential to sustaining multicellular organisms and maximizing the benefits of multicellularity. It has long been believed that red algal intercellular transport of macromolecules is prevented by the protein-rich pit plug within pit-connections, the only physical connection between cells. Fluorescein isothiocyanate-dextran and recombinant green fluorescence protein (rGFP) of various molecular sizes were injected into vegetative cells of Griffithsia monilis using a micromanipulator, and intercellular transport of the fluorescent probes was examined. Pit-connections were found to provide intercellular transport of tracers at rates comparable to plasmodesmata in other organisms. The time necessary for the transport to an adjacent cell was dependent on the molecular size and the direction of the transport. Fluorescent dextran of 3 kDa was transported to adjacent cells in 1-2 h after injection and migrated to all cells of the filament within 24 h, but fluorescent dextran of 10-20 kDa took 24 h to transfer to neighboring cells. The migration occurred faster towards adjacent reproductive cells and to apical cells than basally. Fluorescent tracers above 40 kDa and rGFP was not transported to neighboring cells, but accumulated near the pit plug. Our results suggest that pit-connections are conduit for macromolecules between neighboring cells and that these size-specific conduits allow intercellular communication between the vegetative cells of red algae.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Ultrastructure and molecular phylogeny of Mesodinium annulatum sp. nov. (Mesodiniidae, Cyclotrichiida), a new member of the Mesodinium rubrum / Mesodinium major complex

  • Seung Won Nam;Miran Kim;Seok Won Jang;Myung Gil Park;Wonho Yih;Hyung Seop Kim;Woongghi Shin
    • ALGAE
    • /
    • v.39 no.3
    • /
    • pp.129-147
    • /
    • 2024
  • The species complex Mesodinium rubrum / major, common red tide-forming ciliates, has been intensively studied with regards to its ecological roles in global marine ecosystems and the evolutionary aspects of its "stolen" organelles (kleptoplasty and karyoklepty). Nonetheless, the taxonomy of the species within the complex remains unclear. A new marine Mesodinium species isolated from Gomso Bay, Korea, was cultivated under mixotrophic conditions by providing Teleaulax amphioxeia, a red cryptomonad, as prey. Cells of the new isolate consisted of two portions separated by two types of polykinetids. The number of polykinetid associated with the equatorial ciliary belt was approximately 38, and each consisting of two rows of up to 18 alternating kinetosomes each. There was an equal number of cirral polykinetids, each consisting of 16 kinetosomes organized into four longitudinal rows having five, five, four, and two kinetosomes, respectively (in anti-clockwise direction). The two kinds of kinetids and their associated microtubules and fibers were structurally similar to those of M. rubrum from Denmark. However, the Korean Mesodinium species was characterized by its broad posterior portion, 20-22 tentacles, and a cytopharyngeal annulus. Molecular phylogeny based on internal transcribed spacer sequences placed the Korean isolate in clade B of the M. rubrum / major species complex, rather than in clade F representing the neotype of M. rubrum. Based on morphological, ultrastructural, and molecular data, we propose the Korean strain as a new marine Mesodinium species, M. annulatum.