• Title/Summary/Keyword: biological assays

Search Result 479, Processing Time 0.025 seconds

Anti-oxidant and Anti-tumor Activities of Crude Extracts by Gastrodia elata Blume (천마추출물의 항산화 및 항암 활성)

  • Heo Jin-Chul;Park Ja-Young;An Sang-Mi;Lee Jin-Man;Yun Chi-Young;Shin Heung-Mook;Kwon Taeg-Kyu;Lee Sang-Han
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.83-87
    • /
    • 2006
  • Gastrodia elata Blume is a major imp0l1ant medicinal resource in Korea. In order to confirm the biological activities of Gastrodia elata Blume, we carried out various in vitro assays. Of them, anti-oxidant and anti-tumor activities were detected from assays. The prototype of Gastrodia elata Blume extracts was used for 1he evaluation of DPPH, FRAP, hydroxyradical scavenging assay as anti-oxidant assays, as well as anti-tumor asctivities as wound assay and invasion assay. As a result, the prototype of Gastrodia elata Blume extracts showed potent anti-oxidative activity and anti-tumor activity in vitro. These above results suggest that 1he Gastrodia elata Blume extracts could have potential to alleviate oxidation process, cell motility activity, and tumorigenesis.

Anti-oxidant and Anti-inflammatory Effects of the Fermented Rhododendron weyrichii Flower Extracts in Shindari, a Traditional Jeju Fermented Drink

  • Lee, Nari;Hyun, Su Bin;Yun, Suk Hyun;Chung, You Chul;Hyun, Chang-Gu
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.471-479
    • /
    • 2020
  • The aim of this study was to investigate the anti-oxidant and anti-inflammatory activities of the Rhododendron weyrichii flower extract fermented using Shindari, a traditional Jeju barley Nuruk-based fermentation. In this study, we examined the antioxidant potential of R. weyrichii flower extracts (RF) and R. weyrichii flower extracts fermented with Nuruk or Shindari (RFFN or RFFS, respectively) using various in vitro antioxidant assays including DPPH and ABTS radical scavenging assays, total phenol content and FRAP assays. We also evaluated the anti-inflammatory activity of the RF and RFFS on murine RAW 264.7 cells. The anti-inflammatory activity was evaluated by treating the RAW 264.7 cells with various concentrations (6.25, 12.5, 25, and 50 ㎍/ml) of RF or RFFS. As a result, we observed that the ABTS radical scavenging activity and total phenol content of RFFS was higher than that of RF and RFFN. Additionally, lipopolysaccharide-induced nitric oxide (NO) production was significantly lower in RFFS-treated cells when compared to the LPS-treated control. In addition, RFFS-treated cells exhibited decreased expression of inducible NO synthase (iNOS) proteins and high-performance liquid chromatography (HPLC) fingerprinting showed that both the quercetin and quercetin glucoside (quercitrin and isoquercitrin) levels were affected by the fermentation process. In conclusion, our data suggests that traditional fermentation could be an important strategy in improving the biological properties of raw materials including their antioxidant and anti-inflammatory activities. Finally, RFFS may be a candidate for developing topical antioxidant and anti-inflammatory agents.

Characterization of the KG1a Cell Line for Use in a Cell Migration Based Screening Assay

  • Bernhard O. Palsson;Karl francis;Lee, Gyun-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • High-throughput screening has become a popular method used to identify new “leads”for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of various in-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially glowing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.

Physiological Functionalities of Solvent Fractions Isolated from Crataegi Fructus

  • Oh, Hae-Sook;Kim, Jun-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.249-255
    • /
    • 2008
  • In this study we investigated the biological activities of Crataegi Fructus, including antioxidative, fibrinolytic, $\alpha$-glucosidase inhibitory, and thrombin inhibitory activities. Crataegi Fructus, hot water extract was fractionated into hexane, $CHCLl_3$, ethyl acetate, butanol, and water fractions, and each of these was assayed individually. The water fraction showed the highest extraction yield at 4.08% (w/w). The antioxidative activities of the water, ethyl acetate, and butanol fractions were 31.07%, 45.87%, 50.28%, and 91.74%, respectively. Assays for fibrinolytic activity indicated that only the butanol fraction has significant efficacy at 1.93 plasmin units/ml. Thrombin inhibitory assays indicated that the 10-fold dilutions of the $CHCLl_3$, ethyl acetate, and butanol fractions had inhibitory activities of 34.97%, 41.43%, and 58.10%, respectively. The 10-fold dilutions of the only ethyl acetate fraction demonstrated $\alpha$-glucosidase inhibitory activities of 75.07%. From the above results, we propose that extracts of Crataegi Fructus can be used as a material for the development of biofunctional foods.

  • PDF

Effects of Polycyclic Aromatic Hydrocarbons on DNA Damage and Plasma Protein Expression in Mouse

  • Oh, Sang-Nam;Oh, Eun-Ha;Im, Ho-Sub;Jo, Gyu-Chan;Sul, Dong-Geun;Kim, Young-Whan;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmentally prevalent xenobiotics that exert complex effects on the biological system and characterized as probably carcinogenic materials. Single cell gel electrophoresis assays were performed in order to evaluate DNA damage occurring in the T-and B lymphocytes, spleens (T/B-cell), bone marrow, and livers of mouse exposed to mixture of PAHs (Benzo(a)pyrene, Benzo(e)pyrene, Fluoranthene, Pyrene) at dose of 400, 800, or 1600 mg/kg body weight for 2 days. DNA damage of the cells purified from mice was increased in dose dependent manner. In the blood cells and organs, DNA damage was also discovered to vary directly with PAHs. Especially T-cells had been damaged more than B-cell. Plasma proteomes were separated by 2-dimensional electrophoresis with pH 4-7 ranges of IPG Dry strips and many proteins showed significant up-and -down expressions with the dose dependent manner. Of these, significant 4 spots were identified using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. Identified proteins were related to energy metabolism and signal transduction.

Antioxidant and Anti-diabetes Activities of Methanolic Extract and Fractions of Astragalus membranaceus Roots

  • Park, Jae-Hyo;Yin, Yu;Wang, Myeong-Hyeon
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • The potential biological activities of methanol extract and 5 fractions (hexane, $CH_2Cl_2$, EtOAc, BuOH and water) from roots of Astragalus membranaceus were examined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, hydroxyl radical (${\cdot}OH$) scavenging activity, reducing power assays, lipid peroxidation inhibitory activity, $\alpha$-amylase and $\alpha$-glucosidase inhibition assays. The EtOAc fraction showed high DPPH free radical scavenging activity ($EC_{50}=170.34\;{\mu}g/mL$), hydroxyl radical scavenging activity ($EC_{50}=32.14\;{\mu}g/mL$), lipid peroxidation inhibitory activity ($EC_{50}=52.46\;{\mu}g/mL$) and a concentration dependence, with OD value ranging from 0.234 to 0.345 (0.1 to 0.5 mg/mL), for reducing power. The EtOAc fraction has the highest total phenolic content ($142.13\;Gal\;{\mu}g/mg$) and the $CH_2Cl_2$ fraction has the highest flavonoid content ($71.63\;Que\;{\mu}g/mg$). Meanwhile, hexane and EtOAc showed certain $\alpha$-amylase and $\alpha$-glucosidase inhibition activities. These results suggest that the methanol extract and fractions from Astragalus membranaceus root have significant antioxidant and anti-diabetes activities, which could be used as a potential source of pharmaceutical materials.

Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles

  • Fernando, H.N.;Kumarasinghe, K.G.U.R.;Gunasekara, T.D.C.P.;Wijekoon, H.P.S.K.;Ekanayaka, E.M.A.K.;Rajapaksha, S.P.;Fernando, S.S.N.;Jayaweera, P.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1841-1851
    • /
    • 2019
  • Garcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.

Inhibition of Matrix Metalloproteinases-12 (MMP-12) and Anti-oxidant Effect of Xanthohumol from Hop (Humulus lupulus L.)

  • Lee, Keyong Ho;Yoon, Won Ho
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.261-265
    • /
    • 2012
  • Xanthohumol was isolated from hops (Humulus lupulus L.), and then investigated anti-oxidant effect by AAPH-induced LLC-PK1 cell and oxygen radical absorbance capacity (ORCA) assays and MMP-12 inhibitory effect by direct MMP-12 inhibition assay. The treatment of xanthohumol protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, SOD and GSH-px reduction in a dose dependant manner (0.1, 1, and $5{\mu}M$), the SOD value was 2.98, 4.51, and 5.77 U/mg protein, and GSH-px value was 30.12, 49.32, and 60.11 U/mg protein. ORAC value of xanthohumol was showed as 4320, 12004, and $14209{\mu}M$ TE/g at the concentration 0.1, 1, and $5{\mu}M$, respectively. The change of SOD and GSH-px values was significantly correlated with the results of ORAC assay, that is, AAPH-induced cell and ORCA assays. In addition, inhibition of MMP-12 that is known to play an important role in skin aging was 14%, 37%, 46%, and 79% at the concentration of 0.01, 0.1, 1, and $5{\mu}M$, respectively. On the basis of these results, xanthohumol from hops (Humulus lupulus L.) showed interesting biological and pharmacological activity such as anti-oxidant effect and anti-aging.

Neuroprotective Effect of Taurine against Oxidative Stress-Induced Damages in Neuronal Cells

  • Yeon, Jeong-Ah;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.24-31
    • /
    • 2010
  • Taurine, 2-aminoethanesulfonic acid, is an abundant free amino acid present in brain cells and exerts many important biological functions such as anti-convulsant, modulation of neuronal excitability, regulation of learning and memory, anti-aggressiveness and anti-alcoholic effects. In the present study, we investigated to explore whether taurine has any protective actions against oxidative stress-induced damages in neuronal cells. ERK I/II regulates signaling pathways involved in nitric oxide (NO) and reactive oxygen species (ROS) production and plays a role in the regulation of cell growth, and apoptosis. We have found that taurine significantly inhibited AMPA induced cortical depolarization in the Grease Gap assays using rat cortical slices. Taurine also inhibited AMPA-induced neuronal cell damage in MTT assays in the differentiated SH-SY5Y cells. When the neuronal cells were treated with $H_2O_2$, levels of NO were increased; however, taurine pretreatment decreased the NO production induced by $H_2O_2$ to approximately normal levels. Interestingly, taurine treatment stimulated ERK I/II activity in the presence of AMPA or $H_2O_2$, suggesting the potential role of ERK I/II in the neuroprotection of taurine. Taken together, taurine has significant neuroprotective actions against AMPA or $H_2O_2$ induced damages in neuronal cells, possibly via activation of ERK I/II.

Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay (환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구)

  • 신해식
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2004.05a
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF