• 제목/요약/키워드: biogenesis

검색결과 189건 처리시간 0.027초

Genetic analysis of polyketide biosynthetic genes isolated from Streptomyces albus, a salinomycin producer.

  • JOO-WON SUH;KWON, HYOUNG-JIN;C.R. HUTCHINSON;HYUNG-JONG JIN;SOO-UN KIM;KYE-JOON LEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.74-79
    • /
    • 1995
  • Sequence analysis of a DNA region encompassing the site of hybridization to actl, the gene for type II minimal polyketide synthase (PKS) for actinorhodin biosynthesis, from Streptomyces ablus revealed three more complete open reading frames additional to the already found two genes, plausibly encoding ${\beta}-ketoacyl$ synthase/acyl transferase (KS/AT) and chain length determining factor (ClF). The open reading frames (ORFs) were named salA, salD, and salE, from the upstream. In the homology analysis of the deduced amino acid sequences, SalA resembles the Streptomyces glaucescens Tcml, decaketide cyclase, SalD resembles acyl carrier protein in type II PKS, and SalE resembles the Actlll ketoreductase, The whole 4.4 kb of DNA sequence obeys the same conservation pattern as other type II PKSs. Therefore, we suggest that the 4.4 kb DNA from Streptomyces albus encompasses genes encoding enzymes for polyketide biogenesis in the organism and its organization is type II. The exsitence of SaIA, an analogue of the aromatic cyclase, revealed a relatedness of the 4.4 kb DNA with the aromatic PKS.

  • PDF

The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence

  • Li, Jingbo;Chang, Yun C.;Wu, Chun-Hua;Liu, Jennifer;Kwon-Chung, Kyung J.;Huang, Sheng-He;Shimada, Hiro;Fante, Rob;Fu, Xiaowei;Jong, Ambrose
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.918-927
    • /
    • 2016
  • Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus.

An Annealing Control Primer (ACP) System Used for the Isolation and Identification of Copper-Induced Genes in Alfalfa Leaves

  • Lee, Ki-Won;Lee, Sang-Hoon;Kim, Ki-Yong;Ji, Hee Chung;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Rahman, Md. Atikur
    • 한국초지조사료학회지
    • /
    • 제36권3호
    • /
    • pp.237-242
    • /
    • 2016
  • Copper (Cu) is a necessary microelement for plants. However, high concentrations of Cu are toxic to plants that change the regulation of several stress-induced proteins. In this study, an annealing control primer (ACP) based approach was used to identify differentially expressed Cu-induced genes in alfalfa leaves. Two-week-old alfalfa plants (Medicago sativa L.) were exposed to Cu for 6 h. Total RNAs were isolated from treated and control leaves followed by ACP-based PCR technique. Using GeneFishing ACPs, we obtained several genes those expression levels were induced by Cu. Finally, we identified several genes including UDP-glucuronic acid decarboxylase, transmembrane protein, small heat shock protein, C-type cytochrome biogenesis protein, mitochondrial 2-oxoglutarate, and trans-2,3-enoyl-CoA reductase in alfalfa leaves. These identified genes have putative functions in cellular processes such as cell wall structural rearrangements, transduction, stress tolerance, heme transport, carbon and nitrogen assimilation, and lipid biosynthesis. Response of Cu-induced genes and their identification in alfalfa would be useful for molecular breeding to improve alfalfa with tolerance to heavy metals.

Protection of Mice Against Pandemic H1N1 Influenza Virus Challenge After Immunization with Baculovirus-Expressed Stabilizing Peptide Fusion Hemagglutinin Protein

  • Yang, Eunji;Cho, Yonggeun;Choi, Jung-ah;Choi, YoungJoo;Park, Pil-Gu;Park, Eunsun;Lee, Choong Hwan;Lee, Hyeja;Kim, Jongsun;Lee, Jae Myun;Song, Manki
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.280-287
    • /
    • 2015
  • Current influenza vaccines are produced in embryonated chicken eggs. However, egg-based vaccines have various problems. To address these problems, recombinant protein vaccines have been developed as new vaccine candidates. Unfortunately, recombinant proteins frequently encounter aggregation and low stability during their biogenesis. It has been previously demonstrated that recombinantly expressed proteins can be greatly stabilized with high solubility by fusing stabilizing peptide (SP) derived from the C-terminal acidic tail of human synuclein (ATS). To investigate whether SP fusion proteins can induce protective immunity in mice, we produced influenza HA and SP fusion protein using a baculovirus expression system. In in vitro tests, SP-fused recombinant HA1 (SP-rHA1) was shown to be more stable than recombinant HA1 (rHA1). Mice were immunized intramuscularly with baculovirus-expressed rHA1 protein or SP-rHA1 protein ($2{\mu}g/mouse$) formulated with aluminum hydroxide. Antibody responses were determined by ELISA and hemagglutination inhibition assay. We observed that SP-rHA1 immunization elicited HA-specific antibody responses that were comparable to rHA1 immunization. These results indicate that fusion of SP to rHA1 does not negatively affect the immunogenicity of the vaccine candidate. Therefore, it is possible to apply SP fusion technology to develop stable recombinant protein vaccines with high solubility.

Association between the DICER rs1057035 Polymorphism and Cancer Risk: Evidence from a Meta-analysis of 1,2675 Individuals

  • Yu, Yan-Yan;Kuang, Dan;Yin, Xiao-Xv
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.119-124
    • /
    • 2015
  • Background: DICER, one of the microRNA (miRNA) biogenesis proteins, is involved in the maturation of miRNAs and is implicated in cancer development and progression. The results from previous epidemiological studies on associations between DICER rs1057035 polymorphism and cancer risk were inconsistent. Thereforewe performed this meta-analysis to summarize possible associations. Materials and Methods: We searched all relevant articles on associations between DICER rs1057035 polymorphism and cancer risk from PubMed, EMBASE, Chinese Biomedical Literature and Chinese National Knowledge Infrastructure until August 2014. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess any associations. Heterogeneity tests, sensitivity analyses and publication bias assessments were also performed in this meta-analysis. All analyses were conducted using STATA software. Results: Seven case-control studies, including 4,875 cancer cases and 7,800 controls were included in the meta-analysis. Overall, the results indicated that the C allele of DICER rs1057035 polymorphism was significantly associated with decreased cancer risk in allelic comparison, heterozygote and dominant genetic models (C vs T: OR=0.88, 95%CI 0.81-0.95, p=0.002; TC vs TT: OR=0.85, 95%CI 0.77-0.93, p=0.001; CC/TC vs TT: OR=0.86, 95%CI 0.78-0.94, p=0.001). In the subgroup analysis by ethnicity, a significantly decreased cancer risk was found in Asian but not Caucasian populations. Conclusions: The present meta-analysis suggests that the C allele of the DICER rs1057035 polymorphism probably decreases cancer risk. However, this association may be Asian-specific and the results should be treated with caution. Further well-designed studies based on larger sample sizes and group of populations are needed to validate these findings.

The rs61764370 Functional Variant in the KRAS Oncogene is Associated with Chronic Myeloid Leukemia Risk in Women

  • Gutierrez-Malacatt, Humberto;Ayala-Sanchez, Manuel;Aquino-Ortega, Xochitl;Dominguez-Rodriguez, Jacqueline;Martinez-Tovar, Adolfo;Olarte-Carrillo, Irma;Martinez-Hernandez, Angelica;Cecilia, Contreras-Cubas C;Orozco, Lorena;Cordova, Emilio J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2265-2270
    • /
    • 2016
  • Background: Chronic myeloid leukemia (CML) is one of the most frequent hematopoietic malignancies in the elderly population; however, knowledge is limited regarding the genetic factors associated with increased risk for CML. Polymorphisms affecting microRNA (miRNA) biogenesis or mRNA:miRNA interactions are important risk factors in the development of different types of cancer. Thus, we carried out a case-control study to test the association with CML susceptibility of gene variants located in the miRNA machinery genes AGO1 (rs636832) and GEMIN4 (rs2740348), as well as in the miRNA binding sites of the genes BRCA1 (rs799917) and KRAS (rs61764370). Materials and Methods: We determined the genotype of 781 Mexican-Mestizo individuals (469 healthy subjects and 312 CML cases) for the four polymorphisms using TaqMan probes to test the association with CML susceptibility. Results: We found a borderline association of the minor homozygote genotype of the KRAS_rs61764370 polymorphism with an increased risk for CML susceptibility (P = 0.06). After gender stratification, this association was significant only for women (odds ratio [OR] = 13.41, P = 0.04). The distribution of the allelic and genotypic frequencies of the four studied SNPs was neither associated with advanced phases of CML nor treatment response. Conclusions: To the best of our knowledge, this study is the first to show a significant association of the KRAS_rs61764370 SNP with CML. To further determine such an association of with CML susceptibility, our results must be replicated in different ethnic groups.

Interacting Domain Between Yeast Chitin Synthase 3 and Chitin Synthase 4 is Involved in Biogenesis of Chitin Ring, but not for Cell Wall Chitin

  • Choi, Shin-Jung;Park, Nok-Hyun;Park, Hyun-Sook;Park, Mee-Hyun;Woo, Jee-Eun;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.263-268
    • /
    • 2003
  • Recently, we identified a domain, termed MIRC3-4, for the protein-protein interaction between yeast chitin synthase 3 (CHS3) and chitin synthase 4 (CHS4). In this study, the functional roles of MIRC3-4 were examined at the G1 phase and cytokinesis of the cell cycle by Calcofluor staining and FISH. Some mutations in MIRC3-4 resulted in disappearance of the chitin ring in the early G1 phase, but did not affect chitin synthesis in the cell wall at cytokinesis. The chitin distribution in chs4 mutant cells indicated that CHS4 was involved in the synthesis of chitinring in the G1 phase and in the synthesis of cell wall chitin after cytokinesis, suggesting that Chs4p regulates chitin synthase 3 activity differently in G1 and cytokinesis. Absence of the chitin ring could be caused either by delocalization of Chs3p to the bud-neck or by improper interaction with Chs4p. When mutant cells were immunostained with a Chs3p-specific antibody to discriminate between these two alternatives, the mutated Ch3p was found to localize to the neck in all MIRC3-4 mutants. These results strongly irdicate that Chs4p regulates Chs3p as an activator but not a recruiter.

Biocomputational Characterization and Evolutionary Analysis of Bubaline Dicer1 Enzyme

  • Singh, Jasdeep;Mukhopadhyay, Chandra Sekhar;Arora, Jaspreet Singh;Kaur, Simarjeet
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.876-887
    • /
    • 2015
  • Dicer, an ribonuclease type III type endonuclease, is the key enzyme involved in biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs), and thus plays a critical role in RNA interference through post transcriptional regulation of gene expression. This enzyme has not been well studied in the Indian water buffalo, an important species known for disease resistance and high milk production. In this study, the primary coding sequence (5,778 bp) of bubaline dicer (GenBank: AB969677.1) was determined and the bubaline Dicer1 biocomputationally characterized to determine the phylogenetic signature among higher eukaryotes. The evolutionary tree revealed that all the transcript variants of Dicer1 belonging to a specific species were within the same node and the sequences belonging to primates, rodents and lagomorphs, avians and reptiles formed independent clusters. The bubaline dicer1 is closely related to that of cattle and other ruminants and significantly divergent from dicer of lower species such as tapeworm, sea urchin and fruit fly. Evolutionary divergence analysis conducted using MEGA6 software indicated that dicer has undergone purifying selection over the time. Seventeen divergent sequences, representing each of the families/taxa were selected to study the specific regions of positive vis-$\grave{a}$-vis negative selection using different models like single likelihood ancestor counting, fixed effects likelihood, and random effects likelihood of Datamonkey server. Comparative analysis of the domain structure revealed that Dicer1 is conserved across mammalian species while variation both in terms of length of Dicer enzyme and presence or absence of domain is evident in the lower organisms.

분열효모에서 spTho1 유전자의 결실과 과발현이 생장 및 mRNA Export에 미치는 영향 (Effects of spTho1 Deletion and Over-Expression on mRNA Export in Fission Yeast)

  • 조예슬;윤진호
    • 미생물학회지
    • /
    • 제46권4호
    • /
    • pp.401-404
    • /
    • 2010
  • 출아효모 Saccharomyces cerevisiae에서 RNA-binding 단백질인 Tho1은 mRNA가 전사되는 동안 초기 mRNA에 결합하여 mRNP 생성과 성숙한 mRNA의 핵에서 세포질로의 방출에 관여하는 것으로 여겨진다. 분열효모 Schizosaccharomyces pombe에서도 Tho1과 유사한 단백질을 암호화하는 유전자(spTho1로 명명)를 찾아 그 특성을 조사하였다. 이배체 S.pombe 균주에 하나의 spTho1 유전자만을 결실시킨 후 4분체분석을 수행한 결과, 이 유전자는 생장에 반드시 필요하지 않았다. 또한 spTho1 결실 돌연변이는 mRNA의 핵에서 세포질로의 방출도 정상적으로 보였다. 그러나 티아민에 의해 발현이 조절되는 강력한 프로모터를 이용하여 spTho1를 과발현시키면, 세포의 생장이 억제되었으며 $poly(A)^+$ RNA가 핵 안에 축적되었다. 이와 같은 결과들은 spTho1 유전자가 필수적이지는 않지만 mRNA의 핵에서 세포질로의 방출에 관여하고 있음을 시사한다.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.