• 제목/요약/키워드: biofuels

검색결과 130건 처리시간 0.021초

Botryococcus braunii 배양에서 탄화수소의 two-stage 동시추출공정

  • 안진영;최정규;심상준;김병우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.229-232
    • /
    • 2000
  • 본 연구에서는 균주의 배양과 동시에 생산물을 회수할 수 있는 동시추출공정을 건조질량의 $15{\sim}75%$의 탄화수소를 생산한다고 알려진 B. braunii 배양에 적용하고자 한다. 일반적인 two-phase 동시추출공정의 적용시 B. braunii의 경우 생산된 탄화수소가 균주 외벽의 matrix에 강하게 부착되어 있기 때문에, two phase 추출공정 적용시 bubble column내에서 단지 폭기에 의한 교반만으로는 충분한 탄화수소의 회수율을 얻을 수가 없었다. 본 연구에서는 배양액과 유기용매층의 접촉기회를 증대시킨 two-stage 동시추출 공정을 개발하여 기존의 two-phase 동시추출 공정보다 2배 이상 높은 56.2%의 탄화수소 회수율을 얻을 수가 있었다.

  • PDF

Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives

  • Hong, Ji Won;Kang, Nam Seon;Jang, Hyeong Seok;Kim, Hyung June;An, Yong Rock;Yoon, Moongeun;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • 제41권4호
    • /
    • pp.289-309
    • /
    • 2019
  • Marine microalgae have long been used as food additives and feeds for juvenile fish and invertebrates as their nutritional content is beneficial for humans and marine aquaculture species. Recently, they have also been recognized as a promising source for cosmeceutical, nutraceutical, and pharmaceutical products as well as biofuels. Marine microalgae of various species are rich in multiple anti-oxidant phytochemicals and their bioactive components have been employed in cosmetics and dietary supplements. Oil contents in certain groups of marine microalgae are extraordinarily rich and abundant and therefore have been commercialized as omega-3 and omega-6 fatty acid supplements and mass production of microalgae-based biodiesels has been demonstrated by diverse research groups. Numerous natural products from marine microalgae with significant biological activities are reported yearly and this is attributed to their unique adaptive abilities to the great diversity of marine habitats and harsh conditions of marine environments. Previously unknown toxin compounds from red tide-forming dinoflagellates have also been identified which opens up potential applications in the blue biotechnology sector. This review paper provides a brief overview of the biotechnological potentials of Korean marine microalgae. We hope that this review will provide guidance for future marine biotechnology R&D strategies and the various marine microalgae-based industries in Korea.

수처리용 미세조류의 수확을 위한 전기응집기술의 적용 (Feasibility Study on Electro Coagulation Flocculation for Microalgae Harvesting)

  • 이석민;조재형;노경호;장산;황현정;남귀숙;황선진
    • 상하수도학회지
    • /
    • 제29권6호
    • /
    • pp.643-649
    • /
    • 2015
  • Although microalgae are considered as a promising feedstock for biofuels, cost-efficient harvesting of microalgae needs to be significantly improved. In this study, the use of electro coagulation as a more rapid flocculation method for harvesting a freshwater (Scenedesmus dimorphus) microalgae species was evaluated. The results showed that, electro coagulation was shown to be more efficient using an aluminum anode than using an iron anode. And optimum conditions of electro coagulation for harvesting Scenedesmus dimorphus were found. The optimum stirring speed was 100 rpm and optimum pH was 5. Furthermore, the current density which the fastest and highest recovery efficiency is achieved at $30A/m^2$, while the highest energy efficiency was achieved at $10A/m^2$. A the rapid and high recovery efficiency indicate that electro coagulation is a particularly attractive technology for harvesting microalgae.

Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production

  • Kim, Garam;Mujtaba, Ghulam;Lee, Kisay
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.257-266
    • /
    • 2016
  • Nitrogen is one of the most critical nutrients affecting cell growth and biochemical composition of microalgae, ultimately determining the lipid or carbohydrate productivity for biofuels. In order to investigate the effect of nitrogen sources on the cell growth and biochemical composition of the marine microalga Tetraselmis sp., nine different N sources, including NaNO3, KNO3, NH4NO3, NH4HCO3, NH4Cl, CH3COONH4, urea, glycine, and yeast extract were compared at the given concentration of 8.82 mM. Higher biomass concentration was achieved under organic nitrogen sources, such as yeast extract (2.23 g L−1) and glycine (1.62 g L−1), compared to nitrate- (1.45 g L−1) or ammonium-N (0.98 g L−1). All ammonium sources showed an inhibition of cell growth, but accumulated higher lipids, showing a maximum content of 28.3% in ammonium bicarbonate. When Tetraselmis sp. was cultivated using yeast extract, the highest lipid productivity of 36.0 mg L−1 d−1 was achieved, followed by glycine 21.5 mg L−1 d−1 and nitrate 19.9 mg L−1 d−1. Ammonium bicarbonate resulted in the lowest lipid productivity of 14.4 mg L−1 d−1. The major fatty acids in Tetraselmis sp. were palmitic, oleic, linoleic and linolenic acids, regardless of the nutritional compositions, indicating the suitability of this species for biodiesel production.

The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta)

  • Contreras-Pool, Patricia Yolanda;Peraza-Echeverria, Santy;Ku-Gonzalez, Angela Francisca;Herrera-Valencia, Virginia Aurora
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.267-276
    • /
    • 2016
  • Microalgae are currently a very promising source of biomass and triacylglycerol (TAG) for biofuels. In a previous study, we identified Chlorella saccharophila as a suitable source of oil for biodiesel production because it showed high biomass and lipid content with an appropriate fatty acid methyl esters profile. To improve the TAG accumulation in C. saccharophila, in this study we evaluated the effect of abscisic acid (ABA) addition on cell concentration, lipid content and TAG production in this microalga. First, we evaluated the effects of four ABA concentrations (1, 4, 10, and 20 μM) added at the beginning of a single-stage cultivation strategy, and found that all concentrations tested significantly increased cell concentration and TAG content in C. saccharophila. We then evaluated the addition of 1 μM ABA during the second stage of a two-stage cultivation strategy and compared it with a nitrogen deficiency treatment (ND) and a combination of ND and ABA (ND + ABA). Although ABA alone significantly increased lipid and TAG contents compared with the control, ND showed significantly higher TAG content, and ND + ABA showed the highest TAG content. When comparing the results of both strategies, we found a superior response in terms of TAG accumulation with the addition of 1 μM ABA at the beginning of a single-stage cultivation system. This strategy is a simple and effective way to improve the TAG content in C. saccharophila and probably other microalgae as a feedstock for biodiesel production.

고온성 세균 Caldicellulosiruptor bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산 (Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii)

  • 이한승
    • 생명과학회지
    • /
    • 제25권12호
    • /
    • pp.1450-1457
    • /
    • 2015
  • 화석 연료의 고갈과 환경 문제를 극복하기 위하여 식물성 바이오매스를 이용한 바이오연료의 생산이 큰 주목을 받고 있는 가운데 화학적 전처리를 하지 않은 바이오매스를 직접 분해할 수 있는 그램 양성 초호열성 세균 Caldicellulosiruptor bescii에 대한 관심이 높아지고 있다. C. bescii는 식물 세포벽을 구성하는 셀룰로스, 헤미셀룰로스 등의 분해 뿐만 아니라 세포벽을 연결시켜주는 pectin도 효율적으로 분해할 수 있는데 최근 C. bescii의 genetic tool이 개발되면서 바이오매스 분해에 관여하는 효소의 특성 규명과 아울러 대사공학적 방법으로 바이오에탄올을 생산하는 통합바이오공정(consolidated bioprocessing; CBP)의 개발이 가능케 되었다. 본 총설에서는 초고온성 세균인 C. bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산에 대한 최신 연구결과를 소개하고 향후 전망에 대해 논하고자 한다.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권1호
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구 (Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents)

  • 김재곤;전철환;민경일;김신;박천규;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

석탄가스화 공정 모델링에 관한 연구 (A Study of Coal Gasification Process Modeling)

  • 이중원;김미영;지준화;김시문;박세익
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.