• 제목/요약/키워드: biofilm thickness

검색결과 50건 처리시간 0.024초

국내 시판 우유와 저지방 우유의 Streptococcus mutans 세균막에 대한 우식원성 비교 (Comparison of Cariogenicity of Bovine Milk and Low-fat Milk on Streptococcus mutans Biofilm)

  • 황민선;박호원;이주현;서현우;이시영
    • 대한소아치과학회지
    • /
    • 제44권2호
    • /
    • pp.170-179
    • /
    • 2017
  • 본 연구의 목적은 국내 상품화된 일반 우유와 저지방 우유의 우식원성을 CDC Biofilm Reactor를 사용한 세균막 모델을 통해 비교하는 것이다. 소의 법랑질 시편에 Streptococcus mutans ATCC 25175 세균막을 형성하였다. 하루에 3번 일반 우유, 저지방 우유와 0.9% 생리식염수를 세균막에 노출시켰다. 시간의 흐름에 따른 배지의 pH 변화를 측정하였다. 실험 5일째 시편에서 세균막을 분리하여 세균의 집락 형성단위를 측정하였다. 세균막의 두께는 공초점현미경으로 관찰하였다. 실험 전, 후의 표면미세경도를 측정하여 시편의 미세경도변화율을 평가하였다. 세 군 간의 pH 변화 양상과 세균막 두께는 유사하였으며 미세경도변화율과 세균의 집락형성단위는 유의한 차이를 보이지 않았다(p > 0.05). 본 연구 결과, 일반 우유와 저지방 우유의 우식원성은 차이를 보이지 않았으며, 우유는 우식에 대해 안전한 식품임을 확인하였다.

Assessment of Characteristics of Biofilm Formed on Autotrophic Denitrification

  • JANG AM;BUM MINSU;KIM SUNGYOUN;AHN YEONGHEE;KIM IN S;BISHOP PAUL L
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.455-460
    • /
    • 2005
  • A pilot-scale sulfur particle autotrophic denitrification (SPAD) process for the treatment of municipal wastewater was operated for 10 months at Shihwa, Korea, and higher than $90\%\;NO^{-}_{3}-N$ removal efficiency was observed. Plate counting showed that the lower part of the denitrifying column reactor had the most autotrophic denitrifiers. The biofilm thickness formed on sulfur particles from the SPAD reactor was approximately $25-30\;{\mu}m$, measured by DAPI (4,6-diamidino-2-phenylindole) staining. The presence of bacteria inside the highly porous sulfur particle was also monitored by SEM observation of the internal surfaces of broken sulfur particles. Biofilm extracellular polymeric substances (EPS) analysis showed that the ratio of carbohydrate to protein decreased with the reactor heights at which biofilm-formed sulfur particles were obtained.

2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션 (Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal)

  • 배효관
    • 한국물환경학회지
    • /
    • 제38권4호
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

호기성 침지형 생물막법을 이용한 Polyester 감량폐수의 처리 (Treatment of Polyester Weight Loss Wastewater by Aerated Submerged Biofilm Process)

  • 박종웅;김대희
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.85-90
    • /
    • 1997
  • The objective of this study was to investigate biodegradation of TPA(terephthalic acid) and EG (ethylene glycol), treatment efficiency of polyester weight loss wastewater and microbial characteristics by aerated submerged biolfilm(ASB) p.rocess. In a batch reactor, pH increased from 7.0 to 8. 5 in the biodegradation of TPA. Whereas, in case of EG, decreased from 7.0 to 5.2. COD concentration rapidly decreased within 24hr in the biodegradation of TPA and EG. COD removal velocity constant(k) were 0.065-0.088 hr$^{-1}$. The biodegradation velocity of TPA was 1.4 times faster than that of EG. The ratio of suspended biomass to the total biomass in the reactor was 18.3-33.3%, increased as a high ratio of EG content. Biofilm thickness, biofilm dry density and attached biomass were 346-432 $\mu$m, 41.8-61.9 mg/cm$^3$, 1.45-2.67 mg/cm$^2$, respectively. There values increased as a high ratio of TPA content. In the hydraulic retention time of 36 hr, organic loading rate of 4 kgCOD/m$^3\cdot$ day and packing ratio of 70%, the effluent concentrations of TCOD, SCOD in a continuous flow reator were 1,388 mg/l, 147 mg/l and removal efficiencies were 77%, 97.6%, respectively.

  • PDF

생물막 유동층 반응기에서 미생물 성상에 따른 속도론적 고찰 (A Kinetic Study with Biomass Characteristics in Fluidized-Bed Biofilm Reactor.)

  • 김동석;안갑환이민규송승구
    • KSBB Journal
    • /
    • 제6권2호
    • /
    • pp.115-121
    • /
    • 1991
  • 본 연구의 목적은 생물막 유동층 반응기내에서 높은 유기물 부하를 처리하는데 있어 지지체에 부착된 미생울의 특성과 유기물의 처리효율을 조사하는데 있다. 실험은 글루코오즈를 주 기질로 한 합성폐수를 이용하여, 상향유속은 0.47cm / sec, 체류시간을 5시간, 운전 온도는 $22{\pm}1{\circ}C$, pH는 $7{\pm}0.1$로 일정하게 하고 유기물 부하를 $10kgCOD\;/\;{\textrm{m}^3}$.day에서 $80kgCOD\;/\;{\textrm{m}^3}$.day로 증가시켰을 때, 각각 95%, 73%의 높은 COD 처리효율을 얻었다. 고정 생물막 반응기에 사용된 Andrew의 유기물 제거율 모델을 본 생물막 유동층 반응기에 적용시켜본 결과, 실제 유기물 제거율과 예측한 유기물 제거율은 85% 정도로 일치하였다.

  • PDF

상향류식 바이오비드 공법을 이용한 오·폐수 처리특성 및 부착 생물막의 형태적 특징 (Treatment Kinetics of Wastewater and Morphological Characteristics of Biofilm in Upflow Biobead® Process)

  • 염규진;이정훈;김선미;최원석
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.201-212
    • /
    • 2002
  • The objective of this study was to investigate the treatment efficiency, kinetics, and morphological characteristics of biofilm in upflow $Biobead^{(R)}$ process, a kind of biological aerated filter(BAF). The $Biobead^{(R)}$ system showed high removal rates of $COD_{Mn}$(76~83%), $BOD_5$(67~88%) and SS(71~91%) for food wastewater with high salt concentration ($>4,000mg/{\ell}$) under short reaction times(2~3hrs). Even at aerobic condition, the system had high treatment efficiency for both T-N (51~63%) and T-P(62~81%). The removal kinetics of $COD_{Mn}$, $BOD_5$, T-N, T-P, and $Cl^-$ in the $Biobead^{(R)}$ system showed a plug-flow pattern with reaction rate constants($hr^{-1}$) of 0.58, 0.63, 0,30, 0.48, and 0.38 respectively. A backwashing process to remove excess biomass and filtered solids was needed at least once during 22-hour operation at $0.5kg\;BOD\;m^{-3}{\cdot}d^{-1}$ loading. At the higher loading($1.0kg\;BOD\;m^{-3}{\cdot}d^{-1}$) the backwashing interval was shorten by 8 hours. The COD, BOD, T-N, and T-P were removed from 43 to 66% only by aerobic biodegradation. The SS was removed over 70% by the filtering of $Biobead^{(R)}$ media in the treatment system. The first one of three serial Biobead reactors showed the highest removal values for $COD_{\alpha}$(52.3%), $COD_{Mn}$(38.8%), BOD(62.5%), and T-N(40.0%). The SS and T-P had the highest removal values(47.5% and 29.2%) at the second one of the serial reactors. The biofilm had non-homogeneous spatial distribution and the colonies were embedded in the sunk area of the Biobead. The thickness of the biofilm was very thin ($5.0{\sim}29.4{\mu}m$) compared to the biofilm thickness($200{\sim}300{\mu}m$) used in other BAF systems.

호기성(好氣性) 침지형(浸漬型) 생물막공법(生物膜工法)에서 온도(溫度)가 처리효율(處理効率)에 미치는 영향(影響) (Effect of Temperature on the Treatment Efficiency in Aerated Submerged Biofilm Process)

  • 박종웅;유명진
    • 대한토목학회논문집
    • /
    • 제11권1호
    • /
    • pp.189-196
    • /
    • 1991
  • 본(本) 연구(硏究)에서는 침지형(浸漬型) 생물막(生物膜) 반응조(反應槽)에서 온도(溫度)의 변화(變化)가 미생물(微生物) 성상(性狀)과 처리효율(處理効率)에 미치는 영향(影響)을 구명(究明)하였다. 침지형(沈漬型) 생물막(生物膜) 반응조(反應槽)에서 온도와 매체충전율(媒體充塡率)을 변화시켜 얻어진 연구결과를 요약(要約)하면 다음과 같다. 1. 생물막(生物膜) 밀도(密度), 부착미생물량(附着微生物量), 생물막(生物膜)두께는 온도(溫度)와 매체충전량(媒體充塡量)의 변화에 상당한 영향을 받는다. 2. 반응조 내의 총(總) 미생물(微生物) 중 부유미생물(浮遊微生物)이 차지하는 비율은 약 10-50%로 부유미생물(浮遊微生物)이 기질제거(基質除去)에 관여하는 역할을 무시할 수 없음이 입증되었다. 3. 온도와 총 미생물농도에 따른 BOD 제거효율(除去効率)을 나타내는 관계식을 유도할 수 있었다. 4. 본 공법(工法)은 온도변화에 강(強)한 편으로, Van't Hoff-Arrhenius 변형식(變形式)을 이용하여 구(求)한 온도보정계수(溫度補正係數)는 1.042이었다.

  • PDF

생물막공법을 이용한 도시하수처리에 관한 연구 (A Study on the Municipal Wastewater Treatment Using Biofilm Process)

  • 곽병찬;탁성제;김남천;황용우
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.62-75
    • /
    • 2000
  • Most of biological treatment to remove contaminants in municipal wastewater have been conducted by activated sludge process. But, the process have several probIems such as enormous site needed for construction of treatment facilities, unstable treatment due to limited ability to control load fluctuation, frequent sludge bulking and appearance of lots of surplus sludge. In this study, the experiments were performed through submerging biofilm of PEPP media in existing aeration tank with raw water from municipal wastewater treatment plant and then submerging PVDC and PEPP media, different from shape and chemical peculiarity in anoxic reactor. Throughout the experience, nutrient removal efficiency according to HRT, nitrogen phosphorous removal efficiency, behavior of nitrogen and dewatering efficiency have been compared and analysed with those of activated sludge process. As the results, BOD removal efficiency according to BOD volumetric load and F/M ratio was not found any differency in two processes, but was decreased below 90% as going along the condition of high load in activated sludge process. Kinetic coefficient was $K_{max}=1.162day^{-1}$, $K_s=53.77mg/L$, $Y=0.166mgVSS/mgBOD_{rem}$. and $K_d=0.019day^{-1}$. It was found that the removal efficiency, even though in aerobic condition, in biofilm process equipped anoxic reactor was higher than the one in activated sludge process within the range of 70~80%, and became better as HRT increased. Phosphorous removal efficiency was not found any differency in two processes. In biofilm process, treament efficiency even in conditions of high load was not decreased, because the biomass concentration could be maintained in high condition compared with activated sludge process. As HRT increased, suspended and attached biomass was increased and the other hand, F/M ratio was decreased as biomass' increasing. Biomass thickness was increased. from $10.43{\mu}m$ to $10.55{\mu}m$ as HRT increased and density of biomass within $40.79{\sim}41.16mg/cm^2$. The results also present that the dewatering efficiency of sludge generated in biofilm process was higher than in activated sludge process, and became better as HRT increased.

  • PDF

혐기성 고정 생물막 공정에서 유입 농도의 변화에 따른 기질 전달 현상

  • 이덕환;김도한;박영식;윤태영;송승구
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.351-354
    • /
    • 2002
  • 부산광역시 수영 하수처리장의 소화조에서 농축조로 보내지는 혐기성 슬러지를 탈기된 증류수와 1:1로 희석하여 11.900 mg/L로 만든 후 혐기성 고정 생물막 반응기에 15일간 생물막을 부착시킨 후, 부유 슬러시를 제거하고 각 반응기에 각각 8.00 mgTOC/L, 9.76 mgTOC/L, 및 18.97mgTOC/L의 기질 농도를 유입하여 HRT 0.496일로 각 반응기에 연속적으로 주입하여 실험하였다. 기질 전달 현상과 관련하여 각 반응기에 대한 실험 결과는, 저농도로 기질이 유입된 반응기 l과 2에서는 생물막 두께 및 기질 제거율, 기질 소비 속도 상수($k_v$), 유효 확산 계수($D_{eff}$) 가 비슷하였으나, 고농도로 기질이 유입된 반응기 3에는 자농도로 기질이 유입된 반응기 1과 2 보다 높은 값을 나타내었다. 이는 본 실험에 사용된 혐기성 미생물이 고농도의 기질을 유입하였을 때, 더욱 원활하게 성장함에 따라 높은 기질 소비를 나타내었다.

  • PDF