• Title/Summary/Keyword: biofilm removal

Search Result 219, Processing Time 0.022 seconds

Effect of Media Packing Ratio on the Sequencing Batch Biofilm Reator (연속회분식 생물막 반응기에서 여재 충진율의 영향)

  • 김동석;박민정
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.791-799
    • /
    • 2003
  • This study was carried out to get more operational characteristics of the sequencing batch biofilm reactors with media volume/reactor volume ratio of 15 %, 25 % and 35 %. Experiments were conducted to find the effects of the media packing ratio on organic matters and nutrients removal. Three laboratory scale reactors were fed with synthetic wastewater. During studies, the operation mode was fixed. The organic removal efficiency didn't show large difference among three reactor of different packing media ratios. However, from the study results, the optimum packing media ratios for biological nutrient removal was shown as 25%. The denitrifying PAOs could take up and store phosphate using nitrate as electron acceptor.

Treatment of Polyester Weight Loss Wastewater by Aerated Submerged Biofilm Process (호기성 침지형 생물막법을 이용한 Polyester 감량폐수의 처리)

  • 박종웅;김대희
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.85-90
    • /
    • 1997
  • The objective of this study was to investigate biodegradation of TPA(terephthalic acid) and EG (ethylene glycol), treatment efficiency of polyester weight loss wastewater and microbial characteristics by aerated submerged biolfilm(ASB) p.rocess. In a batch reactor, pH increased from 7.0 to 8. 5 in the biodegradation of TPA. Whereas, in case of EG, decreased from 7.0 to 5.2. COD concentration rapidly decreased within 24hr in the biodegradation of TPA and EG. COD removal velocity constant(k) were 0.065-0.088 hr$^{-1}$. The biodegradation velocity of TPA was 1.4 times faster than that of EG. The ratio of suspended biomass to the total biomass in the reactor was 18.3-33.3%, increased as a high ratio of EG content. Biofilm thickness, biofilm dry density and attached biomass were 346-432 $\mu$m, 41.8-61.9 mg/cm$^3$, 1.45-2.67 mg/cm$^2$, respectively. There values increased as a high ratio of TPA content. In the hydraulic retention time of 36 hr, organic loading rate of 4 kgCOD/m$^3\cdot$ day and packing ratio of 70%, the effluent concentrations of TCOD, SCOD in a continuous flow reator were 1,388 mg/l, 147 mg/l and removal efficiencies were 77%, 97.6%, respectively.

  • PDF

Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal (2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션)

  • Bae, Hyokwon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

A Comparison of Nutrient Removal Characteristics between (AO)2 SBBR and A2O SBBR ((AO)2 SBBR과 A2O SBBR에서 영양염류 제거 특성 비교)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.444-450
    • /
    • 2006
  • This study was carried out to compare the performance of two types of sequencing batch biofilm reactors (SBBRs), anoxic-oxic-anoxic-oxic $(AO)_2$ SBBR and anoxic-oxic-anoxic $A_2O$ SBBR, on the biological nutrient removal. The TOC removal efficiency in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. At the 1st non-aeration period, the release of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR because of the high TOC removal. At the 1st aeration-period, the nitrification was not completed in $(AO)_2$ SBBR, however, it was completed in $A_2O$ SBBR and the nitrification rate in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. The release and uptake of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was much higher than in $(AO)_2$ SBBR. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBBRs. The break point in DO and pH curves at the aeration period coincided with the end of nitrification.

A Study on the Denitrification in the Fluidized Bed Biofilm Reactor (미생물막을 이용한 유동층 반응기에서의 생물학적 탈질화에 관한 연구)

  • 김우식;유재욱
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.169-174
    • /
    • 1983
  • The study was concerned with the biological denitrification of wastewater using the fluidization of biofilm-coated carbon particles. And the effect of Glucose and biofilm thickness on denitrification was mainly investigated. Experimental results showed that biofilm thickness increased with the growth of bacteria and 14 days after the beginning of operation, the thickness approached 300-310${\mu}{\textrm}{m}$. It was found that biofilm thickness was directly concerned with the removal efficiency of NO$_3$$^{[-10]}$ -N. As the results of experiments to find out the influence of Glucose on denitrification, Glucose, 60% excess from stoichiometric quantity was adequate and sufficient to react the bacteria with NO$_3$$^{[-10]}$ -N.

  • PDF

Treatment Kinetics of Wastewater and Morphological Characteristics of Biofilm in Upflow Biobead® Process (상향류식 바이오비드 공법을 이용한 오·폐수 처리특성 및 부착 생물막의 형태적 특징)

  • Yum, Kyu-Jin;Lee, Jeong-Hun;Kim, Sun-Mi;Choi, Weon-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.201-212
    • /
    • 2002
  • The objective of this study was to investigate the treatment efficiency, kinetics, and morphological characteristics of biofilm in upflow $Biobead^{(R)}$ process, a kind of biological aerated filter(BAF). The $Biobead^{(R)}$ system showed high removal rates of $COD_{Mn}$(76~83%), $BOD_5$(67~88%) and SS(71~91%) for food wastewater with high salt concentration ($>4,000mg/{\ell}$) under short reaction times(2~3hrs). Even at aerobic condition, the system had high treatment efficiency for both T-N (51~63%) and T-P(62~81%). The removal kinetics of $COD_{Mn}$, $BOD_5$, T-N, T-P, and $Cl^-$ in the $Biobead^{(R)}$ system showed a plug-flow pattern with reaction rate constants($hr^{-1}$) of 0.58, 0.63, 0,30, 0.48, and 0.38 respectively. A backwashing process to remove excess biomass and filtered solids was needed at least once during 22-hour operation at $0.5kg\;BOD\;m^{-3}{\cdot}d^{-1}$ loading. At the higher loading($1.0kg\;BOD\;m^{-3}{\cdot}d^{-1}$) the backwashing interval was shorten by 8 hours. The COD, BOD, T-N, and T-P were removed from 43 to 66% only by aerobic biodegradation. The SS was removed over 70% by the filtering of $Biobead^{(R)}$ media in the treatment system. The first one of three serial Biobead reactors showed the highest removal values for $COD_{\alpha}$(52.3%), $COD_{Mn}$(38.8%), BOD(62.5%), and T-N(40.0%). The SS and T-P had the highest removal values(47.5% and 29.2%) at the second one of the serial reactors. The biofilm had non-homogeneous spatial distribution and the colonies were embedded in the sunk area of the Biobead. The thickness of the biofilm was very thin ($5.0{\sim}29.4{\mu}m$) compared to the biofilm thickness($200{\sim}300{\mu}m$) used in other BAF systems.

Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor (혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리)

  • 박영식;문정현
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).

The Treatment of Industrial Wastewater by the Fluidized-Bed Biofilm Reactor (미생물막 유동층 반응기를 이용한 산업폐수 처리에 관하여)

  • Suh, Myung-Gyo;Suh, Jung-Ho;Kang, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Substrate removal efficiency of industrial wastewater from dye plant was investigated with fluidized-bed biofilm reactor(FBBR). Wastewater was diluted by 2, 3 and 6 times for experiment. When F/M ratio was increased 0.2 to 0.3, substrate removal efficiency of wastewater was rapidly decreased in all dilution ratio. Substrate removal efficiency was increased with dilution ratio in same F/M ratio, with hydraulic retention time. In case of 6 times diluted wastewater, below 0.2 F/M ratio, removal efficiency of BOD was $90{\sim}97%$. For reactor design, the parameters such as Y, $k_d$ and r was obtained as follows: $Y=0.3365\;k_d=0.03782\;day^{-1}\;r=0.997$ in 2 times diluted $Y=0.3341\;k_d=0.02750\;day^{-1}\;r=0.996$ in 3 times diluted $Y=0.3365\;k_d=0.03434\;day^{-1}\;r=0.998$ in 6 times diluted

  • PDF

The Effects of Biofilm Care on Subgingival Bacterial Motility and Halitosis

  • Kim, Yu-Rin
    • Journal of dental hygiene science
    • /
    • v.19 no.3
    • /
    • pp.162-169
    • /
    • 2019
  • Background: Oral diseases are caused by various systemic and local factors, the most closely related being the biofilm. However, the challenges involved in removing an established biofilm necessitate professional care for its removal. This study aimed to evaluate and compare the effects of professional self and professional biofilm care in healthy patients to prevent the development of periodontal diseases. Methods: Thirty-seven patients who visited the dental clinic between September 2018 and February 2019 were included in this study. Self-biofilm care was performed by routine tooth brushing and professional biofilm care was provided using the toothpick method (TPM) or the oral prophylaxis (OP) method using a rubber cup. Subgingival bacterial motility and halitosis (levels of hydrogen sulfide, $H_2S$; methyl mercaptan, $CH_3SH$; and di-methyl sulfide, $(CH_3)_2S$) were measured before, immediately after, and 5 hours after the preventive treatment in the three groups. Repeated measures analysis of variance test was performed to determine significant differences among the groups. Results: TPM was effective immediately after the prevention treatment, whereas OP was more effective after 5 hours (proximal surfaces, F=16.353, p<0.001; smooth surfaces, F=66.575, p<0.001). The three components responsible for halitosis were effectively reduced by professional biofilm care immediately after the preventive treatment; however, self-biofilm care was more effective after 5 hours ($H_2S$, F=3.564, p=0.011; $CH_3SH$, F=6.657, p<0.001; $(CH_3)_2S$, F=21.135, p<0.001). Conclusion: To prevent oral diseases, it is critical to monitor the biofilm. The dental hygienist should check the oral hygiene status and the ability of the patient to administer oral care. Professional biofilm care should be provided by assessing and treating each surface of the tooth. We hope to strengthen our professional in biofilm care through continuous clinical research.

Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process (DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성)

  • Kim, Il-Kyu;Lee, Sang-Min;Lim, Kyeong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.992-998
    • /
    • 2008
  • Recently, a new concept for nitrogen removal that is simultaneous nitrification and denitrification(SND) has been studied for wastewater treatment process. The DMR(Daiho Microbic Revolution) process that used in this study consists of two suspended anoxic, anaerobic reactors and an aerobic biofilm reactor. The function of aerobic environment and the intensity of air flow rate(2.0, 1.0, 0.5, 0.4, 0.2 L/min) were studied in the biofilm reactor; also SND and nutrient removal efficiencies were investigated. Experimental results indicated that the change in air flow did not affect COD$_{Cr}$ removal significantly. Thus sustained at 93%. The lower the air flow rate, the higher T-N removal efficiency was attained(i.e.80% at 0.2 L/min). SND efficiency was 62, 65, 72 and 78% corresponding to each air flow rate. T-P removal was sensitive to aeration intensity and removal enhanced from 75% to 96% when the air flow rate was changed from 2.0 to 0.5 L/m; however second release occured in the clarifier at 0.2 L/min. Phosphorus content of activated sludge was 5.0%, as P releases and acetate uptake a ratio of 0.75 mg P/ mg HAc.