• Title/Summary/Keyword: biofilm model

Search Result 57, Processing Time 0.025 seconds

Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by Candida albicans

  • Raut, Jayant Shankar;Shinde, Ravikumar Bapurao;Chauhan, Nitin Mahendra;Karuppayil, Sankunny Mohan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1216-1225
    • /
    • 2014
  • Biofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C. albicans. Standard susceptibility testing protocol was used to evaluate the activities of 13 phenylpropanoids against planktonic growth. Their effects on adhesion and yeast-to-hyphae morphogenesis were studied in microplate-based methodologies. An in vitro biofilm model analyzed the phenylpropanoid-mediated prevention of biofilm development and mature biofilms using XTT-metabolic assay, crystal violet assay, and light microscopy. Six molecules exhibited fungistatic activity at ${\leq}0.5mg/ml$, of which four were fungicidal at low concentrations. Seven phenylpropanoids inhibited yeast-to-hyphae transition at low concentrations (0.031-0.5 mg/ml), whereas adhesion to the solid substrate was prevented in the range of 0.5-2 mg/ml. Treatment with ${\leq}0.5mg/ml$ concentrations of at least six small molecules resulted in significant (p < 0.05) inhibition of biofilm formation by C. albicans. Mature biofilms that are highly resistant to antifungal drugs were susceptible to low concentrations of 4 of the 13 molecules. This study revealed phenylpropanoids of plant origin as promising candidates to devise preventive strategies against drug-resistant biofilms of C. albicans.

An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms

  • Tavares, Livia Jacovassi;Klein, Marlise Inez;Panariello, Beatriz Helena Dias;de Avila, Erica Dorigatti;Pavarina, Ana Claudia
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.12-21
    • /
    • 2018
  • Purpose: The goal of this study was to develop and validate a standardized in vitro pathogenic biofilm attached onto saliva-coated surfaces. Methods: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) strains were grown under anaerobic conditions as single species and in dual-species cultures. Initially, the bacterial biomass was evaluated at 24 and 48 hours to determine the optimal timing for the adhesion phase onto saliva-coated polystyrene surfaces. Thereafter, biofilm development was assessed over time by crystal violet staining and scanning electron microscopy. Results: The data showed no significant difference in the overall biomass after 48 hours for P. gingivalis in single- and dual-species conditions. After adhesion, P. gingivalis in single- and dual-species biofilms accumulated a substantially higher biomass after 7 days of incubation than after 3 days, but no significant difference was found between 5 and 7 days. Although the biomass of the F. nucleatum biofilm was higher at 3 days, no difference was found at 3, 5, or 7 days of incubation. Conclusions: Polystyrene substrates from well plates work as a standard surface and provide reproducible results for in vitro biofilm models. Our biofilm model could serve as a reference point for studies investigating biofilms on different surfaces.

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Approximated Solution of Model for Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi Jeong-Woo;Min Junhong;Lee Won-Hong;Lee Sang Baek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.65-70
    • /
    • 2000
  • An approximated analytical solution of mathematical model for the three phase fluidized bed bioreactor (TFBBR) was proposed using the linearization technique to describe oxygen utilization rate in wastewater treatment. The validation of the model was done in comparison with the experimental results. Satisfactory agreement was obtained in the comparison of approximated analytical solution and numerical solution in the oxygen concentration profile of a TFBBR. The approximated solutions for three modes of the liquid phase flow were compared. The proposed model was able to predict the biomass concentration, dissolved oxygen concentration the height of efficient column, and the removal efficiency.

  • PDF

Reduced Susceptibility of a Model Saccharomyces cerevisiae Biofilm to Osmotic Upshifts

  • Jirku Vlacimir;Jan Masak;Alena Cejkova
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.17-20
    • /
    • 2001
  • Whole-cell attachment by covalent linkage, thereby simulating natural and specific attachments, improves the osmotolerance of Saccharomyces cerevisiae cells. The enhanced osmoresistance is correlated with a decrease in the intercellular concentration of trehalose and accompanied by membrane compositional changed. The results obtained indicate that yeast cell-support (physical) contact is sensed and responded to.

  • PDF

A Kinetic Study with Biomass Characteristics in Fluidized-Bed Biofilm Reactor. (생물막 유동층 반응기에서 미생물 성상에 따른 속도론적 고찰)

  • 김동석;안갑환이민규송승구
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • A number of experiments were conducted in order to investigate the COD removal rate according to the biofilm thickness in a Fluidized-Bed Biofilm Reactor(FBBR). The following conditions were fixed during the experiments: superficial upflow velocity was 0.47cm/sec, operating temperature was $22{\pm}1{\circ}C$ and pH was about $7{\pm}0.1$. The synthetic wastewater based on glucose was used as a substrate. The COD removal efficiencies were shown as 73% and 95%, respectively, when organic loading rate was increased from $10kgCOD\;/\;{\textrm{m}^3}$.day to $80kgCOD\;/\;{\textrm{m}^3}$.day. Andrew's model of substrate removal rate which was commonly used in fixed-biofilm reactor was transformed and applied in this FBBR experiment to predict substrate removal rate and gave 85% agreement with the experimental values.

  • PDF

Prediction of Effluent Concentration for Contaminated Stream Purification using UFBR (상향류식 고정생물막조를 이용한 오염소하천 정화에 있어서 유출수 농도 예측)

  • Park, Young-Seek;Moon, Jung-Hynu;Ahn, Kab-Hwan
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • The objective of this study is to treat contaminated stream by using a UFBR(upflow fixed biofilm reactor) packed with waste-concrete media. This system was tested from June 1999 to January 2000. Over $20.0^{\circ}C$, $COD_{cr}$ removal efficiency did not affected with organic loading rate while, $COD_{cr}$ removal efficiency decreased about 7% with decrease of temperature from $27.0^{\circ}C$ to $8.7^{\circ}C$. Under $16^{\circ}C$, TKN removal efficiency was affected with TKN loading rate. The proposed model apply to mass balance equation of fixed biofilm reactor for predicting effluent was well satisfied with measured value($R^2=0.94$).

  • PDF

Comparison of Cariogenicity of Bovine Milk and Low-fat Milk on Streptococcus mutans Biofilm (국내 시판 우유와 저지방 우유의 Streptococcus mutans 세균막에 대한 우식원성 비교)

  • Hwang, Minseon;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.170-179
    • /
    • 2017
  • The purpose of this study was to compare the cariogenicity of commercially available bovine milk and low-fat milk in a biofilm model using the CDC Biofilm Reactor. Streptococcus mutans ATCC 25175 biofilms were formed on saliva coated bovine enamel slabs in a CDC Biofilm Reactor. Biofilms were exposed three times per day to one of the following materials: commercial whole milk (fat content: 3.4%), low-fat milk (fat content: 1%), or 0.9% NaCl. Medium pH was measured at different time points. After 5 days, biofilms were separated from slabs to evaluate the CFUs. The biofilm thickness was observed by confocal laser-scanning microscopy (CLSM). Enamel slab's demineralization was assessed by measuring surface microhardness before and after the experiment. For microhardness and CFUs assessment, no significant difference was found among the three groups. All groups showed similar pattern of medium pH change and biofilm thickness. Our results showed that there was no difference in the cariogenicity between whole milk and low-fat milk. Both milks were relatively non-cariogenic compared to the control group.

Acyl-Homoserine lactone Quorum Sensing in Bactreria

  • Greenberg, E.Peter
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.117-121
    • /
    • 2000
  • Recent advances in studies of bacterial gene expression and light microscopy show that cell-to cell communication and communication and community behavior are the rule rather than the exception. One type of cell-cell communication, quorum sensing in Gram-negative bacteria involves acyl-homoserine lactone signals. This type of quorum sension represents a dedicated communication system that enables a given species to sense when it has reached a critical population density. and to respond by activating expression of specific genes. The LuxR and LuxI proteins of Vibrio fisheri are the founding members of the acyl-homoserine lactone quorum sensing signal receptor and signal generator families of proteins. Acyl-homeserine lactone signaling in Pseudomonas aeruginosa is one model for the relationship between quorum sensing community behavior, and virulence. In the P. aeruginosa model. quorum sensing is required for normal biofilm maturation and virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes in P. aeruginosa.

  • PDF

Simulation Model of Dual-Species Biofilm Growth in Hydrodynamic Flow (유체 흐름 안에서 두 종의 생물막 성장 시뮬레이션 모델)

  • Jeon, Won-Ju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.97-105
    • /
    • 2011
  • In rivers and streams, biofilms are thin layers of greenish-brown slime attached to rocks, plants, and other surfaces. Biofilms play key roles in primary production and cycling of nutrients, water quality remediation, suspended sediment removal, and energy flow to higher trophic levels. In the present study, we developed a two-dimensional cellular automata model to simulate mixed biofilms of toxin-sensitive and toxin-producing species in hydrodynamic flow. The flow was generated by a stochastic process for uniform flow and by using the Navier-Stokes equation for non-uniform flow. Minimized local rules governing reproduction and mortality of the species were executed in the self-organizing processes to elucidate interactions between toxin-producing and toxin-sensitive species in competition over nutrients. We briefly discuss the morphology of the simulated biofilm under different flow conditions.