• Title/Summary/Keyword: biofilm control

Search Result 173, Processing Time 0.03 seconds

Acyl-Homoserine lactone Quorum Sensing in Bactreria

  • Greenberg, E.Peter
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.117-121
    • /
    • 2000
  • Recent advances in studies of bacterial gene expression and light microscopy show that cell-to cell communication and communication and community behavior are the rule rather than the exception. One type of cell-cell communication, quorum sensing in Gram-negative bacteria involves acyl-homoserine lactone signals. This type of quorum sension represents a dedicated communication system that enables a given species to sense when it has reached a critical population density. and to respond by activating expression of specific genes. The LuxR and LuxI proteins of Vibrio fisheri are the founding members of the acyl-homoserine lactone quorum sensing signal receptor and signal generator families of proteins. Acyl-homeserine lactone signaling in Pseudomonas aeruginosa is one model for the relationship between quorum sensing community behavior, and virulence. In the P. aeruginosa model. quorum sensing is required for normal biofilm maturation and virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes in P. aeruginosa.

  • PDF

Listeria monocytogenes Biofilms in Food Processing Environments (식품공정환경에서의 Listeria monocytogenes의 바이오필름)

  • Yun, Hyun-Sun;Kim, Sae-Hun;Jean, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.43-48
    • /
    • 2009
  • Listeria monocytogenes is a major concern in food processing environments because it is ubiquitous and can easily contaminate food during processing. Contaminated food and the surfaces in food facilities can serve as reservoirs of L. monocytogenes, which can lead to the serious foodborne illness listeriosis in consumers. L. monocytogenes can adhere to materials commonly used in food processing equipment and form biofilms. In the biofilm mode, L. monocytogenes is significantly more resistant to disinfection or sanitizers than its planktonic counterparts. Many researchers have studied the effects of surface materials on bacterial adhesion and the formation of biofilms. Recent studies have focused on preventing the establishment of L. monocytogenes in niches in the food plant environments.

  • PDF

Establishment of a Dental Unit Biofilm Model Using Well-Plate (Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2017
  • The water discharged from dental unit waterlines (DUWLs) is heavily contaminated with bacteria. The development of efficient disinfectants is required to maintain good quality DUWL water. The purpose of this study was to establish a DUWL biofilm model using well-plates to confirm the effectiveness of disinfectants in the laboratory. Bacteria were obtained from the water discharged from DUWLs and incubated in R2A liquid medium for 10 days. The bacterial solution cultured for 10 days was made into stock and these stocks were incubated in R2A broth and batch mode for 5 days. Batch-cultured bacterial culture solution and polyurethane tubing sections were incubated in 12-well plates for 4 days. Biofilm accumulation was confirmed through plating on R2A solid medium. In addition, the thickness of the biofilm and the shape and distribution of the constituent bacteria were confirmed using confocal laser microscopy and scanning electron microscopy. The average accumulation of the cultured biofilm over 4 days amounted to $1.15{\times}10^7CFU/cm^2$. The biofilm was widely distributed on the inner surface of the polyurethane tubing and consisted of cocci, short-length rods and medium-length rods. The biofilm thickness ranged from $2{\mu}m$ to $7{\mu}m$. The DUWL biofilm model produced in this study can be used to develop disinfectants and study DUWL biofilm-forming bacteria.

Treatment of produced water in a floating carrier bioreactor

  • Ezechi, Ezerie Henry;Sapari, Nasiman;Menyechi, Ezerie Jane;Ude, Clement M.;Olisa, Emmanuel
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.210-215
    • /
    • 2017
  • Produced water is the largest wastestream of oil and gas exploration. It consists of various organic and inorganic compounds that hinder its beneficial use. This study compared the treatment of produced water in a batch suspended and biofilm activated sludge process. The biofilm carrier material was made from Gardenia Carinata shell. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was monitored in both the suspended (control) and floating carrier bioreactors. The results show a rapid reduction of produced water constituents in the floating carrier bioreactor. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was in the range of 99%, 98% and 97% for the floating carrier bioreactor whereas it was 88%, 84% and 83% for the control bioreactor. The rapid reduction of COD, $NH_4{^+}-N$ and $NO_3-N$ clearly indicate that the floating carrier materials served as an attached growth medium for microorganisms, improved the breakdown of produced water constituents and reduced inhibition of microbial metabolic activities.

Quorum-Sensing Mechanisms in Bacterial Communities and Their Potential Applications (세균의 의사 소통(Quorum-Sensing) 기구와 그 잠재적 응용성)

  • Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2006
  • Although microorganisms are, in fact, the most diverse and abundant type of organism on Earth, the ecological functions of microbial populations remains poorly understood. A variety of bacteria including marine Vibrios encounter numerous ecological challenges, such as UV light, predation, competition, and seasonal variations in seawater including pH, salinity, nutrient levels, temperature and so forth. In order to survive and proliferate under variable conditions, they have to develop elaborate means of communication to meet the challenges to which they are exposed. In bacteria, a range of biological functions have recently been found to be regulated by a population density-dependent cell-cell signaling mechanism known as quorum-sensing (QS). In other words, bacterial cells sense population density by monitoring the presence of self-produced extracellular autoinducers (AI). N-acylhomoserine lactone (AHL)-dependent quorum-sensing was first discovered in two luminescent marine bacteria, Vibrio fischeri and Vibrio harveyi. The LuxI/R system of V. fischeriis the paradigm of Gram-negative quorum-sensing systems. At high population density, the accumulated signalstrigger the expression of target genes and thereby initiate a new set of biological activities. Several QS systems have been identified so far. Among them, an AHL-dependent QS system has been found to control biofilm formation in several bacterial species, including Pseudomonas aeruginosa, Aeromonas hydrophila, Burkholderia cepacia, and Serratia liquefaciens. Bacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix that adheres to an inert or living surface. Extracellular signal molecules have been implicated in biofilm formation. Agrobacterium tumefaciens strain NT1(traR, tra::lacZ749) and Chromobacterium violaceum strain CV026 are used as biosensors to detect AHL signals. Quorum sensing in lactic acid bacteria involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular regulator. In the nisin autoregulation process in Lactococcus lactis, the NisK protein acts as the sensor for nisin, and NisR protein as the response regulator activatingthe transcription of target genes. For control over growth and survival in bacterial communities, various strategies need to be developed by which receptors of the signal molecules are interfered with or the synthesis and release of the molecules is controlled. However, much is still unknown about the metabolic processes involved in such signal transduction and whether or not various foods and food ingredients may affect communication between spoilage or pathogenic bacteria. In five to ten years, we will be able to discover new signal molecules, some of which may have applications in food preservation to inhibit the growth of pathogens on foods.

Effects of Methanol Extracts from Diospyros malabarica Stems on Growth and Biofilm Formation of Oral Bacteria (인도감나무 줄기 추출물이 구강미생물의 생육과 바이오필름 생성에 미치는 영향)

  • Kim, Hye Soo;Kwon, Hyun Sook;Kim, Chul Hwan;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.110-115
    • /
    • 2018
  • This study was conducted to investigate the potential of medicinal plants as oral health materials derived from natural products. Among the extracts from 200 medicinal plants grown in Nepal, Laos, Mongolia, Bangladesh, Vietnam, and China, stem extracts from Diospyros malabarica (1 mg/disc) showed the highest antibacterial activity against Porphyromonas gingivalis ATCC33277 and Streptococcus mutans ATCC25175. The D. malabarica stem extracts showed antibacterial activity similar to chlorhexidine, sodium lauryl sulfate, and triclosan, which were used as a positive control, as well as higher antibacterial activity against S. mutans ATCC25175 than P. gingivalis ATCC33277. The D. malabarica stem extracts showed bactericidal action (MBC, 0.4 mg/ml) against P. gingivalis ATCC33277 and bacteriostatic action against S. mutans ATCC25175. The biofilm production rate of S. mutans ATCC25175 and the expression of the comX gene associated to biofilm formation in the cultures treated with 0.2-1.0 mg/ml of D. malabarica stem extracts were suppressed in a concentration-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts can be used as oral health material derived from natural materials, as demonstrated by the bacteriostatic action and inhibition of biofilm formation against S. mutans ATCC25175.

Root Colonization and Quorum Sensing of the Antagonistic Bacterium Pseudomonas fluorescens 2112 involved in the Red-pepper Rhizosphere (생물방제균 Pseudomonas fluorescens 2112의 고추 근권정착능과 Quorum-sensing 기능)

  • Jung, Byung-Kwon;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • Biofilm formation of multifunctional plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens 2112 is necessary for P. fluorescens 2112 to have a positive impact on the rhizosphere of red-pepper. This study investigated whether signal molecules of the quorum sensing AHLs are produced in order to confirm biofilm formative ability. Through the use of Petri dish bioassays a blue circle formed evidence of AHLs. It was confirmed that P. fluorescens 2112 produced six-carbon-chain-long AHLs by TLC bioassay. The bacterial density of P. fluorescens 2112 on the top and bottom of pepper plant roots was estimated as $3{\times}10^5$ and $8{\times}10^3$ CFU/g root, respectively. P. fluorescens 2112 exist more with high-density of $3.5{\times}10^6$ CFU/g soil at a depth of 1 cm but at a low-density of $1.1{\times}10$ CFU/g soil at a depth of 5 cm, from the surface of rhizosphere soil. In addition, biofilm formation of P. fluorescens 2112 on the epidermises and the tips of the red-pepper roots were confirmed visually by SEM. Thus, the production of AHLs by P. fluorescens 2112 brings about quorum sensing signaling and the formation of biofilm on the roots which has a positive effect on economically important crops such as red-pepper by additionally producing a variety of antifungal substances and auxin.

Development of an 1-Dimensional Dynamic Numerical Model for BTX Removal Process Analysis by Gaseous-Biofilm Filtration (기체상-생물막 여과 공법의 BTX 제거 공정 해석을 위한 1차원 동적 수치모델 개발)

  • Kim, Yeong-Kwan;Choi, Sung-Chan;Kim, Seog-Ku;Lee, Yong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.689-695
    • /
    • 2015
  • A biofilm filtration for the removal of gaseous pollutants has been recognized as a process with a complex interaction between the gas flow characteristics and the process operating variables. This study aims to develop an one dimensional dynamic numerical model which can be utilized as a tool for the analysis of biofilm filtration process operated in plug flow mode. Since, in a plug flow system, minor environmental changes in a gaseous unit process cause a drastic change in reaction and the interaction between the pollutants is an influencing factor, plug flow system was generalized in developing the model. For facilitation of the model development, dispersion was simplified based on the principles of material balance. Several reactions such as competition, escalation, and control between the pollutants were included in the model. The applicability of the developed model was evaluated by taking the calibration and verification steps on the experimental data performed for the removal of BTX at both low and high flow concentration. The model demonstrated a correlation coefficient ($R^2$) greater than 0.79 under all the experimental conditions except for the case of toluene at high flow condition, which suggested that this model could be used for the generalized gaseous biofilm plug flow filtration system. In addition, this model could be a useful tool in analyzing the design parameters and evaluating process efficiency of the experiments with substantial amount of complexity and diversity.

Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84

  • Yu, Jun Myoung;Wang, Dongping;Pierson, Leland S. III;Pierson, Elizabeth A.
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.44-58
    • /
    • 2018
  • Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.

Anticariogenic Properties of the Ethanol Extract of Tribuli fructus against Streptococcus mutans (백질려 추출물이 Streptococcus mutans에 대한 항치아우식에 미치는 영향)

  • Lee, Da-Hong;Yu, Hyeon-Hee;Jung, Su-Young;Moon, Hae-Dalma;Kim, Su-Min;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1148-1153
    • /
    • 2007
  • Streptococcus mutans is considered one of the primary etiologic agents of dental caries. we studied the effect of the ethanol extracts of Tribuli fructus (T. fructus) on the growth, biofilm formation, acid production, adhesion and insoluble glucan synthesis of S. mutans. The ethanol extracts of T. fructus showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.025, 0.05, 0.1, 0.2, 0.3, 0.5 mg/ml compared to the control group. In the biofilm assay, the ethanol extracts of T. fructus inhibited formation of biofilm synthesized by S. mutans at the concentration of 0.05 mg/ml. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 50% at the concentration 0.05 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan form sucrose, ethanol extract of T. fructus showed more than 10% inhibition over the concentration of 0.025 mg/ml. Hence, we conclude that T. fructus might be a candidate of anticaries agent. Further studies are necessary to clarify the active constituents of T. fructus responsible for such biomolecular activities.