• 제목/요약/키워드: biofilm biomass

검색결과 103건 처리시간 0.023초

침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향 (Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process)

  • 박종웅
    • 한국환경보건학회지
    • /
    • 제15권1호
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF

역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구 (A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor)

  • 최윤찬;나영수
    • 한국환경과학회지
    • /
    • 제5권3호
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교 (Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe)

  • 박세근;최성찬;김영관
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 본 연구에서는 염소와 모노클로라민을 이용하여 생물막이 제거되는 특성을 알아보았다. 염소와 모노클로라민을 0.5, 1.0, 2.0 mg/L의 농도로 잔류시킨 수돗물을 생물막이 형성되어 있는 모형 수도관에 연속적으로 공급하고, 관 표면으로부터 부착성 HPC와 biomass를 측정하였다. 염소는 생물막을 구성하는 미생물의 비활성화와 표면으로부터 생물막 matrix를 제거하는데 높은 효과를 나타낸 반면에 모노클로라민은 생물막 matrix를 제거하는데 염소보다 상대적으로 낮은 효율을 나타냈다. 특히 모노클로라민을 이용한 소독 처리에서는 세균과 EPS가 결합된 생물막 matrix가 관 표면으로부터 대부분 제거되지 않은 상태로 존재하였다. 비록 2.0 mg/L의 잔류염소가 생물막 제거에 높은 효과를 보였지만, 관 표면에는 여전히 낮은 수준(<10 $CFU/cm^2$ as 부착성 HPC, <5 ${\mu}g/cm^2$ as biomass)의 생물막이 잔류하고 있었다. 생물막의 제거 특성을 평가하는데 있어서 biomass의 측정이 효과적인 수단인 것으로 판단되었다.

역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향 (Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR)

  • 김동석;윤준영
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Bacteria 토양주입을 통한 투수계수 감소 (Reduction of Hydraulic Conductivity by Soil Injection of Bacteria)

  • 송영우;김건하;구동영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.331-337
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils, biomass retained in the pore. Bacteria within these microcolonies produced large amounts of exopolysaccharides and formed a plugging biofilm. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. Also, pore sand of before and after biofilm formation compared with scanning electron microscopy. Hydraulic conductivity of Sand and Poorly Graded Sand was decreased approximately 1/10∼1/100 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition.

  • PDF

유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구 (The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor)

  • 신승훈;김민수;박동일;안재동;장인용
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향- (A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

호기성(好氣性) 침지형(浸漬型) 생물막공법(生物膜工法)에서 온도(溫度)가 처리효율(處理効率)에 미치는 영향(影響) (Effect of Temperature on the Treatment Efficiency in Aerated Submerged Biofilm Process)

  • 박종웅;유명진
    • 대한토목학회논문집
    • /
    • 제11권1호
    • /
    • pp.189-196
    • /
    • 1991
  • 본(本) 연구(硏究)에서는 침지형(浸漬型) 생물막(生物膜) 반응조(反應槽)에서 온도(溫度)의 변화(變化)가 미생물(微生物) 성상(性狀)과 처리효율(處理効率)에 미치는 영향(影響)을 구명(究明)하였다. 침지형(沈漬型) 생물막(生物膜) 반응조(反應槽)에서 온도와 매체충전율(媒體充塡率)을 변화시켜 얻어진 연구결과를 요약(要約)하면 다음과 같다. 1. 생물막(生物膜) 밀도(密度), 부착미생물량(附着微生物量), 생물막(生物膜)두께는 온도(溫度)와 매체충전량(媒體充塡量)의 변화에 상당한 영향을 받는다. 2. 반응조 내의 총(總) 미생물(微生物) 중 부유미생물(浮遊微生物)이 차지하는 비율은 약 10-50%로 부유미생물(浮遊微生物)이 기질제거(基質除去)에 관여하는 역할을 무시할 수 없음이 입증되었다. 3. 온도와 총 미생물농도에 따른 BOD 제거효율(除去効率)을 나타내는 관계식을 유도할 수 있었다. 4. 본 공법(工法)은 온도변화에 강(強)한 편으로, Van't Hoff-Arrhenius 변형식(變形式)을 이용하여 구(求)한 온도보정계수(溫度補正係數)는 1.042이었다.

  • PDF

생물막공법을 이용한 도시하수처리에 관한 연구 (A Study on the Municipal Wastewater Treatment Using Biofilm Process)

  • 곽병찬;탁성제;김남천;황용우
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.62-75
    • /
    • 2000
  • Most of biological treatment to remove contaminants in municipal wastewater have been conducted by activated sludge process. But, the process have several probIems such as enormous site needed for construction of treatment facilities, unstable treatment due to limited ability to control load fluctuation, frequent sludge bulking and appearance of lots of surplus sludge. In this study, the experiments were performed through submerging biofilm of PEPP media in existing aeration tank with raw water from municipal wastewater treatment plant and then submerging PVDC and PEPP media, different from shape and chemical peculiarity in anoxic reactor. Throughout the experience, nutrient removal efficiency according to HRT, nitrogen phosphorous removal efficiency, behavior of nitrogen and dewatering efficiency have been compared and analysed with those of activated sludge process. As the results, BOD removal efficiency according to BOD volumetric load and F/M ratio was not found any differency in two processes, but was decreased below 90% as going along the condition of high load in activated sludge process. Kinetic coefficient was $K_{max}=1.162day^{-1}$, $K_s=53.77mg/L$, $Y=0.166mgVSS/mgBOD_{rem}$. and $K_d=0.019day^{-1}$. It was found that the removal efficiency, even though in aerobic condition, in biofilm process equipped anoxic reactor was higher than the one in activated sludge process within the range of 70~80%, and became better as HRT increased. Phosphorous removal efficiency was not found any differency in two processes. In biofilm process, treament efficiency even in conditions of high load was not decreased, because the biomass concentration could be maintained in high condition compared with activated sludge process. As HRT increased, suspended and attached biomass was increased and the other hand, F/M ratio was decreased as biomass' increasing. Biomass thickness was increased. from $10.43{\mu}m$ to $10.55{\mu}m$ as HRT increased and density of biomass within $40.79{\sim}41.16mg/cm^2$. The results also present that the dewatering efficiency of sludge generated in biofilm process was higher than in activated sludge process, and became better as HRT increased.

  • PDF

독성산업폐수의 생물학적 처리 (Biological Treatability of Toxic Industrial Wastewater)

  • 원성연;박승국;정근욱
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.172-179
    • /
    • 1999
  • In this research, biological treatability test was conduced using seawater flocculated tannery wastewater by fixed biofilm reactor. During one cycle, the removal efficiency of organic corbon obtained with fixed biofilm process for treating tannery wastewater was considerably greater than that with activated sludge process. As the hydraulic retention time increased form 0.5day to 4day, removal efficiency of organic carbon was increased from 72% to 87.3%. Attached biomass in media increased with influent organic loading up to 29g MLSS/L, that could reduce the specific organic loading rate. The continual measurement of attached biomass was possible for the operation of the biofilm reactor. Equal and low nitrication rates were observed in both suspended growth activated sludge process and fixed biofilm process, despite commercial nitrifier was seeded. Through the process of treating the tannery wastewater, EC50 values which is measured by the use of Ceriopdaphnia dubia, were decreased to the extent of 50% after treatment of seawater flocculation and of 83% after biological treatment, respectively, compared to those of the untreated wastewater.

  • PDF