• Title/Summary/Keyword: biodegrade

Search Result 23, Processing Time 0.026 seconds

Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi

  • Kim, Sukyung;Seo, Hoonhee;Mahmud, Hafij Al;Islam, Md Imtiazul;Sultana, Omme Fatema;Lee, Youngkyoung;Kim, Minhee;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1051-1059
    • /
    • 2020
  • Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanin-decomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.

Microbial Degradation of Aromatic Compounds in Industrial Wastewater (방향족화합물이 함유된 폐수의 생물학적 처리)

  • 박춘호;김용기;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.631-636
    • /
    • 1991
  • The bacteria which can biodegrade aromatic compounds were screened from soil and wastewater. The isolated Pseudomonas sp. HC107 had high removal rate of COD and phenol. And also this strain grew on m-cresol, salicylate, toluene, 2, 4-D and benzene. When the strain culture (2 ml/day) was treated on continuous reactor at mixed wastewater from chemical, pharmaceutical and dye industry, the treatment rate of COD, BOD and phenol was to be about 92.5%, 95.3% and 93.5%, respectively.

  • PDF

A Study on the Standardization of Activated Sludge Use to Biodegraded Linear Alkylbenzene Sulfonate (Linear Alkylbenzene Sulfonate의 생분해에 이용되는 활성오니의 표준화에 관한 연구)

  • Sun, Yle-Shik;Jung, Il-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • This study is on the biodegradability of the activated sludge, which used to biodegrade Linear Alkylbenzene Sulfonate(LAS), synthetic detergents and sufactants. The activated sludge in waste water treatment plant is used to the test of biodegradation of anionic surfactants and nonionic surfactants, but it have the periodic change of the biological propety to the lapse of the time. For the puropse of controlling and adjusting of the activated sludge in biodegradation test, we collected microorganisms from the sewage plant and the soil, and then, made the activated sludge in semicontinuous aeration chamber. From determined biodegradation data, and the degree of biodegradability to the LAS, we confirmd the standardized synthetic activated sludge which have more stable biodegradability than the sewage activated sludge. In continuous biodegradation test, LAS(dodecene-1) was biodegraded more than 99%, In 7days by the standardized activated sludge.

Late reconstruction of post-traumatic enophthalmos and hypoglobus using three-dimensional implants: a case series

  • Choi, Jae Hyeok;Baek, Wooyeol
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.5
    • /
    • pp.232-236
    • /
    • 2022
  • Post-traumatic enophthalmos and hypoglobus are common sequelae of facial bone fractures, even after reduction surgery. They are associated with functional and esthetic issues, which may lower the quality of life. These deformities frequently present late, and adequate correction is difficult. We report three cases of late inferior orbital rim reconstructions with three-dimensional printed implants to help resolve these problems. The average duration between the traumatic event and surgery was 3 years and 4 months. One patient was treated with a completely absorbable implant and exhibited satisfactory results until the implant started to biodegrade at 1 year and 9 months after surgery. Two patients were treated with a permanent implant and demonstrated satisfactory results. However, longer follow-up periods were needed. There were no complications such as infection, diplopia, or restriction of ocular motion and the patients were satisfied with the esthetic results.

The Study for Practical use of Bioremediation Agent in Oil-Contaminated Area (해상유출유 오염지역에서의 미생물처리제 활용 방안 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.3-15
    • /
    • 2003
  • Recently more than 450 incidents of oil spill a year have occurred in nearshore of Korea, which caused unmeasurelable losses in fisheries and severe damage in marine ecosystem. Two approaches remain paramount in any response to marine oil spill : the enhancement of natural dispersion of the oil by using dispersants, and mechanical recovery using booms and skimmers. A technique currently receiving fresh attention is the enhancement of the natural bioremediation of oil through the application of micro-organisms and/or nutrient. Oil, like many natural substances, will biodegrade over a period of time into simple compounds such as carbon dioxide, water and biomass. Bioremediation is the term used to describe a range of processes which can be used to accelerate natural biodegradation. More specifically biostimulation is the application of nutrients, and bioaugremetation or seeding is the addition of microbes specially selected to degrade oil. Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF

Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline

  • Lee, Jung-Bok;Sohn, Ho-Yong;Shin, Kee-Sun;Kim, Jong-Sik;Jo, Min-Sub;Jeon, Chun-Pyo;Jang, Jong-Ok;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.343-349
    • /
    • 2008
  • Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

Stabilization of Industrial Wastes Landfill using Lab-lysimeter (모형매립조를 이용한 산업폐기물 매립지의 안정화 조사 기초 연구)

  • 박동일;최석규;홍종순;장인용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.9-18
    • /
    • 1998
  • An experimental research was conducted to establish primary data for the stabilization assessment of industrial wastes landfill with analysis of waste components and investigation of leachate and gas generation, using three sets of lysimeter as experimental apparatus. Comparing results of lysimeter from data of landfill, it is suggested that lysimeter of this study can be used to accomplish the stabilization assessment of the real landfill site. Moisture content was lower as landfill period was older and combustible component was the highest in lysimeter C. The C/N ratio of waste was 7.4~14.4 and, with the elemental analysis, the theoretical gas generation rate based on the modified Buswell equation was 0.47~0.49 $m^3/kg-dry$ waste in lysimeter C. Considering the C/N ratio of leachate, it is concluded that the addition of carbon source is needed to biodegrade leachate hereafter. Gas generation rate($m^3/kg-dry$ waste) from lysimeter A, B and C was 0.0009, 0.014 and 0.0067, respectively, and different from each other according to the landfill period of wastes. The results in this study show that the biodegradation of microorganism for stabilization of landfill was inhibited and more activated in acidogenic step than in methanogenic of anaerobic degradation.

  • PDF

Biodegradation Characteristics of Toluene in a Soil-Bioreactor (토양생물반응기내 Toluene의 분해 특성)

  • Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate the optimal conditions for biodegradation of toluene by Pseudomonas fluorescens KCTC 1767 in a batch soil-bioreactor, the effects of rpm change from 60 to 180, and temperature change from $15^{\circ}C$ to $30^{\circ}C$ in a batch culture and the flow rate change from 55 mL/min to 85 mL/Min in soil-bioreactor on the biodegradation of toluene were studied. In a batch culture the optimal operating conditons were 60 rpm, and $30^{\circ}C$ at initial pH 7, In a soil-bioreactor the optimal flow rate was 55 mL/min in the flow rate of circulation. The lower flow rate of circulation may help to biodegrade toluene adsorped in soil and dissolved in underground water.

  • PDF

Biological Activated Carbon (BAC) Process in Water Treatment (정수처리에서의 생물활성탄 공정)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Roh, Jae-Soon;Yoo, Pyong-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.308-323
    • /
    • 2009
  • This review paper serves to describe the composition and activity of biological activated carbon (BAC) biofilm which is considered as a progressive process for water treatment. As well as several physical-chemical, biochemical and microbiological analysis methods for characterizing the composition and activity of BAC biofilm, the ability of the biofilm to remove and biodegrade organic matters and pollutants related to other water treatment processes such as pre-ozonation will be reviewed. In this paper, conversion of GAC into BAC, removal mechanism of pollutants, characteristics and affecting factors of BAC biofilm, and modeling of BAC are described in detail. In addition, strategies to control the growth of the BAC biofilm, such as varying the nutrient loading rate, altering the frequency of BAC filter backwashing and applying oxidative disinfection, will be dwelled on related to their respective process control challenges.

Study on the biodegradation of alternatives (four species including C8H8F9KO3S) for perfluorooctane sulfonate

  • Choi, Bong-In;Na, Suk-Hyun;Kwak, Yeong-Don;Ryu, Byung-Taek;Chung, Seon-Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.30 no.sup
    • /
    • pp.8.1-8.5
    • /
    • 2015
  • Objectives The objective of this study was to evaluate the biodegradation potential of four perfluorooctane sulfonic acid (PFOS) alternatives that were developed at Changwon National University. While PFOS has been used widely in industrial and consumer products, it is known to be a persistent organic pollutant. Therefore, greener alternatives are highly desirable. Methods Biodegradation tests were run for 28 days using standard test protocols. The biochemical oxygen demand was measured daily throughout the experimental period, and the data were used to calculate the biodegradation rates. Microorganisms were isolated from the some of the tests that showed evidence of biodegradation. Results $C_8H_8F_9KO_3S$, which has the same number of carbons as the parent compound PFOS but a reduced number of fluorines, showed the highest biodegradation rate followed by $C_{10}H_8F_{13}KO_3S$. Chemical alternatives with lower number of carbons did not biodegrade readily in the experiments. Conclusions Together, these results suggest that it may be advantageous to develop PFOS alternatives with 8 carbons, the same as PFOS, but a reduced number of fluorines; as such, chemicals are more susceptible to biodegradation than the parent compound.