• Title/Summary/Keyword: biodegradation of Remazol Black B

Search Result 2, Processing Time 0.022 seconds

Characterization of Remazol Black B-Biodegradation by Stenotrophomonas maltophilia EJ-211 (Stenotrophomonas maltophilia EJ-211에 의한 Remazol Black B의 분해 특성 분석)

  • 이은열;이은정;임광희;임동준
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.288-293
    • /
    • 2002
  • A reactive dye-degrading bacterium was isolated from textile waste water and it was identified as Stenotrophomonas maltophilia based on its biochemical characteristics. The effects of additional carbon and nitrogen sources were investigated for the development of an optimal medium for biodegradation of Remazol Black B by 5. maltophilia. The optimal pH and temperature were determined to be 6.5 and 3$0^{\circ}C$, respectively. Remazol Black B with the initial concentration of 50 ppm could be degraded up to 86% within 28 h.

Biodegradation of a Reactive Dye, Remazol Black B in a UASB Reactor (UASB 반응기를 이용한 반응성 염료 Remazol Black B의 분해)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Kim, Yu-Jin;Lee, Sang-Joon;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.688-695
    • /
    • 1999
  • Biodegradation of the reactive dye, Remazol Black B was investigated in an upflow anaerobic sludge blanket(UASB) reactor. Important parameters studied include dye concentration(20-60 mg/L), glucose concentration as a co-substrate(1,000-3,000 mg/L), hydraulic retention time(3-24 hr), and influent pH(6.0-8.0). Under most conditions tested, the molecules of Black B were degraded readily and completely according to HPLC chromatograms. However, the color removal efficiency based on spectroscopic measurement was always approximately 75%. This suggests that the degradation products have some color intensity corresponding to 25% of the original dye molecules. The maximum influent dye concentration which satisfies the legal discharge limit of color intensity of 400 ADMI was 13 mg/L. and the highest removal rate at this dye concentration was 104 mg/L${\cdot}$day.

  • PDF