• Title/Summary/Keyword: biodegradation,

Search Result 1,039, Processing Time 0.03 seconds

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby (남조류에서 발생하는 독소의 문제점과 대책)

  • Jeon, Bong-seok;Han, Jisun;Kim, Seog-Ku;Ahn, Jae-Hwan;Oh, Hye-Cheol;Park, Ho-Dong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.657-667
    • /
    • 2015
  • Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

Effects of EBCT and Water Temperature on HAA Removal using BAC Process (BAC 공정에서 EBCT와 수온에 따른 HAA 제거 특성)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Yoo, Pyung-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1255-1261
    • /
    • 2008
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of haloacetic acid (HAA) 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 10 and 20$^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the HAA 5 species removal in BAC columns. To achieve an HAA removal efficiency 50% or higher in a BAC filter, the authors suggest 10 min EBCT or longer for 5$^{\circ}C$ waters and 5 min EBCT for waters at 10$^{\circ}C$ or higher. The kinetic analysis suggested a first-order reaction model for HAA 5 species removal at various water temperatures (5, 10 and 20$^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA removal at 5, 10 and 20$^{\circ}C$. The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA 5 species removal at 5$\sim$ 20$^{\circ}C$. The half-lives of HAA 5 species ranging from 0.75 to 18.58 min could be used to assist water utilities in designing and operating BAC filters for HAA removal.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.

Solvent Tolerant Bacteria and Their Potential Use (유기용매 내성 세균과 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1458-1469
    • /
    • 2015
  • Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negative bacteria have inherent tolerance property toward hostile organic solvents more than Gram-positive bacteria. The mechanisms of organic solvent tolerance have been elucidated extensively using mainly organic solvent-tolerant Gram-negative bacteria. The solvent-tolerance mechanisms in Gram-positive bacteria can be found in comparatively recent research. Organic solvents exhibited different toxicity depending on the solvent, and the tolerance levels of organic solvent-tolerant bacteria toward organic solvents were also highly changeable among species and strains. Therefore, organic solvent-tolerant bacteria could coped with solvent toxicity and adapted to solvent stress through the multifactorial and multigenic adaptative strategies. They could be survived even in the hyper concentrations of organic solvents by mechanisms which include: changes in cell morphology and cell behaviour, cell surface modifications, cell membrane adaptations, solvent excretion pumps, chaperones and anti-oxidative response. The aim of this work is to review the representative solvent tolerant bacteria and the adaptative and tolerance strategies toward organic solvents in organic solvent-tolerant bacteria, and their potential industrial and environmental impact.

Phytoremediation of diesel-contaminated soils using alfalfa (Alfalfa를 이용한 디젤오염토양의 phytoremediation)

  • 심지현;이준규;심상규;황경엽;장윤영
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology We attempted to assess the effectiveness of phytoremediation of diesel-contaminated soils in a green house. Screening test for selecting an appropriate plant was performed by observing the harmful effects of diesel dosage on the growth of 4 plants. Alfalfa was selected as a potentially useful plant among corn and barnyard grasses due to its high tolerance to the toxicity of diesel in growth. Bioremediation of the artificial diesel-contaminated soil packed in the PVC columns(0.3m in diameter $\times$ 1m in length) with air supplied, alfalfa planted, and alfalfa and air supplied was investigated for 100 days. The results of the column test showed plant effects on enhancing the biodegradation of diesel in the contaminated soils compared to the control column which had no plant. Injecting air to the columns during phytoremediation also showed additional effects on the removal rate of diesel. Comparison of microbial activity in each test column showed a beneficial effect of plants in the soil remediation processes. This results can be explained microbial activity in rhizosphere is a crucial factor for removing diesel.

  • PDF

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat (흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해)

  • Im, Kyung-Hoan;Baek, Seung-A;Choi, Jae-hyuk;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

Distribution and Characteristics of Acidotolerant Heterotrophic and Naphthalene­Degrading Bacteria in Acidic Soils (산성토양에서 내산성 종속영양세균과 나프탈렌분해세균의 분포 및 특성)

  • Moon Yong-Suk;Chu Kwang-Il;Kim Jongseol
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.313-319
    • /
    • 2004
  • The distribution and characteristics of acidotolerant heterotrophic and naphthalene-degrading bacteria were investigated in two forest areas, one near Ulsan petrochemical industrial complex (Sunam) and the other in countryside (Daeam). Average values of soil pH at Sunam and Daeam were 3.8 and 4.6, respectively. When het­erotrophic and naphthalene-degrading bacteria were enumerated by most probable number (MPN) procedures at Sunam, the median values of heterotrophs growing at pH 7.0 and pH 4.0 were $5.3{\times}10^7\;and\;3.3{times}10^7$ MPN/g, whereas those of naphthalene-degraders were $5.6{\times}10^4\;and\;4.0{times}10^5$ MPN/g, respectively. While the medians of heterotrophs at Daeam were larger than those at Sunam, the concentrations of naphthalene-degraders were higher at Sunam compared to those at Daeam. From the MPN tubes and enrichment cultures, we obtained 17 isolates of naphthalene-degraders which were identified as Sphingomonas paucimobilis, Brevundimonas vesic­ularis, Burkholderia cepacia, Ralstonia pickettii, Pseudomanas fluorescens, and Chryseomonas luteola. Among them, 6 isolates showed higher naphthalene-degrading activity on minimal media of pH 4 compared to pH 7, whereas the extent of growth was not greater at pH 4 than at pH 7 when they were inoculated on nutrient-rich media. It is plausible that the pH may affect naphthalene-degrading activity of the isolates by changing fatty acid composition of bacterial membrane.