• Title/Summary/Keyword: biodegradation,

Search Result 1,043, Processing Time 0.025 seconds

Biological Treatment of TNT-containing Wastewater (pink water) by Stenotrophomonas maltophilia OK-5, and RT-PCR Quantification of the Nitroreductase (pnrB) Gene (Stenotrophomonas maltophilia OK-5에 의한 TNT 함유폐수 (pink water)의 생물학적 처리 와 Nitroreductase (pnrB) 유전자의 RT-PCR 정량화)

  • Cho, Su-Hee;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.556-562
    • /
    • 2009
  • The biological treatment of TNT-containing wastewater, known commonly as pink water, was investigated using a stirred tank reactor with Stenotrophomonas maltophilia OK-5 bacterial culture. S. maltophilia OK-5 exhibited effective degradation of TNT contained in pink water, completely degrading TNT (100 mg/L) within 6 days of incubation. The dark-red brown color derived from Hydride-Meisenheimer complex became more pronounced during the incubation period, which was determined quantitatively. High-pressure liquid chromatography was used to measure residual TNT, which also resolved the metabolic intermediates (i.e., 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4-dinitro-6-hydroxytoluene). Gas chromatography-mass spectrometry was used to verify these intermediates. Quantification of the nitroreductase (pnrB) gene isolated from S. maltophilia OK-5 growing in pink water was performed with real-time PCR. The amount of pnrB gene copies increased to $10^3$-fold after 5 days of incubation time.

Isolation of a Nonylphenol-degrading Microbial Consortium (Nonylphenol 분해 미생물 컨소시엄 균주 개발)

  • Song, Won;Lim, Keun-Sick;Yu, Dae-Ung;Park, Mi-Eun;Jeong, Eun-Tak;Kim, Dong-Myung;Chung, Yong-Hyun;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.325-331
    • /
    • 2011
  • Nonylphenol (NP), which is well known as an endocrine disrupter, has been detected widely in untreated sewage or waste water streams. Given the necessity of discovering an eco-friendly method of degrading this toxic organic compound, this study was conducted to isolate NP-degrading microorganisms from the aqueous environment. NP-degrading microbes were isolated through NP-containing enrichment culture. Finally, a microbial consortium, SW-3, capable of degrading NP with high efficiency, was selected from the mixture sample. The microbial consortium SW-3 was able to degrade over 99% of 100 ppm NP in the culture medium for 40 days at $25^{\circ}C$. The microbial consortium SW-3 seemed to utilize NP as a carbon source, since NP was the sole carbon source in the culture medium. In order to isolate the NP-degrading bacterium, we further conducted single colony isolation using the microbial consortium SW-3. Four strains isolated from SW-3 exhibited lower NP-degradation efficiency than that of SW-3, suggesting that NP was degraded by the co-metabolism of the microbial consortium. We suggest that the microbial consortium obtained in this study would be useful in developing an eco-friendly bioremediation technology for NP degradation.

Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate (고분자량 생분해성 폴리옥살레이트의 합성과 특성분석)

  • Kim, Se-Ho;Yoo, Han-Na;Khang, Gil-Son;Lee, Dong-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ~75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ${\sim}35^{\circ}C$, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.

Hydro-ecological characterizations in groundwater dependent ecosystem (지하수 종속 생태환경에서 수문-생태학적 특성 조사 및 분석)

  • Kim, Hee-Jung;Hyun, Yun-Jung;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The groundwater dependent ecosystem associated with a natural stream is the area where mixing and exchange of surface water and groundwater occurs due to large chemical and hydraulic gradients. Surface-groundwater interactions play an important role in biogeochemical processes in groundwater dependent ecosystems and make this area a hydro-ecological hot spot. The objective of this study is to characterize the groundwater dependent ecosystem in a natural stream where nitrate contamination of stream water is observed by means of hydrogeological, chemical, and biological methods. In this study, vertical flow exchange(hyporheic flow) rates between stream and groundwater were estimated based on vertical hydraulic gradients measured at mini-piezometers of various depths. To investigate the biological natural attenuation potential, biological analyses using polymerase chain reaction(PCR)-cloning methods were performed in this study. Results show that the veritical hyporheic water fluxes affect nitrate concentrations and bacterial densities in groundwater dependent ecosystems to some degree. Also, denitrifying bacteria were identified in hyporheic soils, which may support the biodegradation potential of the groundwater dependent ecosystems under certain conditions.

  • PDF

Cloning and Expression of pcbAB Genes from Pseudomonas sp. DJ-12 in Escherichia coli (Pseudomonas sp. DJ-12 pcbAB 유전자의 Escherichia coli에서의 클로닝 및 발현)

  • 한재진;성태경;김치경
    • Korean Journal of Microbiology
    • /
    • v.31 no.2
    • /
    • pp.129-134
    • /
    • 1993
  • The pchAB genes of Pseudomonas sp. DJ-12 produce the enzymes of 4-chlorobipheny] (4CB) dioxygenase and dihydrodiol dehydrogenase which act on the first and second steps in degradation of 4CB and biphenyl. The genes were cloned in E coli XLI-Blue. The pcbAB genes of about 2.2 kb in size were contained in the pCUlO1 hybrid plasmid in the cloned cell of CUIOI. The genes were found to have their own promoter and three restriction sites for HindlII. 2,3-dihydroxybiphenyl was detected by the resting cell assay, as the metabolite transformed from biphenyl by the cloned cell of CUIOI. This means that the pcbAB genes are well expressed in E. coli. But dechlorination was unlikely involved in the pchAB gene expression but was believed to occur by functioning on 4CBA produced after ring-cleavage of 4CB.

  • PDF

Isolation and Identification of Bacteria Removing Sulfur Compound Odor (황 화합물계 악취 제거 미생물의 분리 및 동정)

  • 김진수;유용규;이상섭
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.127-132
    • /
    • 2004
  • We isolated 50 strains from sludge of wastewater treatment aeration tank using selective medium for Thio-bacillus sp. by membrane filtration method. They were identified as Thiobacillus neapolitanus (7), T. tepidarius (4), T. dientrificans (5), T. versutus (23), T. intermedius (2) and T. perometabolis (9). We selected Thiobacillus versutus strain KT51, which had the highest removal efficiency (100%) of hydrogen sulfide and the highest removal efficiency (85%) of dimethyl sulfide for 30 min in screen test. Also Thiobacillus versutus strain KT81 had the highest removal efficiency (26%) of dimethyl disulfide for 30 min in screen test. In applification of lab-scale reactor (closed-biological treatment) using Thiobacillus versutus strain KT51, results were 99.8% (<0.02 ppm) removal efficiency of hydrogen sulfide for 15 min.

Analysis of Accelerated Aging Natural Ester Oil and Mineral Oil in Distributional Transformers (배전용 변압기에서의 고온열화와 열 사이클 열화에 따른 식물유와 광유의 특성 분석)

  • An, Jung-Sik;Choi, Sun-Ho;Bang, Jeong-Ju;Jung, Joong-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1163-1168
    • /
    • 2011
  • Most transformers use insulating and cooling fluids derived from petroleum crude oil, but mineral oil has some possibility of environmental pollution and fire with explosion. vegetable oil fluids extracted from seed has superior biodegradation and fire-resistant properties including an exceptionally high fire point enhancing fire safety. In this study, it is aimed at the practicality of substituting natural ester dielectric fluid for mineral oil in liquid insulation system of transformers. As a rise in coil winding temperature has a direct influence on transformer life time, it is important to evaluate the temperature rise of coil winding in vegetable oil in comparison with mineral oil. Four transformers for the test are designed with 10KVA, 13.2KV, one phase unit. The temperature are directly measured in insulating oil of these transformers with the two sorts of natural ester and mineral oil dielectric fluid respectively. Experiment for aging carry out two means. First means remained $120^{\circ}C$ that transformer of mineral oil were operated at 185% load. Second means is that insulating oils of two natural ester and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. For the heating, Transformers were operated at 185% load. For the cooling, cooling system was operated in the chamber. Samples were analyzed at 42, 63, 93, 143, 190, 240 300cycles. Analysis contents are dielectric strength, total acid value. Mineral oils compared results of first means with results of second means. And compared two sort natural esters respectively with mineral oil in second means.

Isolation and Identification of Organic Compounds-Degrading Bacteria for the Treatment of Food Wastewater (음식물류폐수처리를 위한 유기물분해 미생물의 분리 및 동정)

  • Chung, Doo-Young;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.128-135
    • /
    • 2007
  • Microorganisms which can degrade organic compounds such as proteins, lipids, and cellulose in food wastewater, were isolated from food wastewater, livestock wastewater, earthworm, and etc. Among these, eleven strains which showed higher degrading activities against three organic compounds, were finally isolated, characterized, and identified. Nine strains were found to be Bacillus species, and other two were to be Enterobacter sp. and Pantoea agglomerans. The strains FWB-5 (Bacillus pumilus), FWB-6 (B. lichenisformis) and OD-4 (Pantoea agglomerans), isolated from food wastewater and livestock wastewater, respectively, showed higher three enzyme activities to organic compounds, especially to cellulose, compared to other strains. The optimal growth conditions for the great enzyme activities were at $37^{\circ}C$ with pH 7.0 for FWB-5 and OD-4 strains, whereas, these were at $25^{\circ}C$ with pH 7.0 for FWB-6 strain.

  • PDF

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF

Enhanced Biodegradation of Total Petroleum Hydrocarbons (TPHs) in Contaminated Soil using Biocatalyst

  • Owen, Jeffrey S.;Pyo, Sunyeon;Kang, Guyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.47-51
    • /
    • 2015
  • Biocatalytic degradation of total petroleum hydrocarbons (TPHs) in contaminated soil by hemoglobin and hydrogen peroxide is an effective soil remediation method. This study used a laboratory soil reactor experiment to evaluate the effectiveness of a nonspecific biocatalytic reaction with hemoglobin and H2O2 for treating TPH-contaminated soil. We also quantified changes in the soil microbial community using real-time PCR analysis during the experimental treatment. The results show that the measured rate constant for the reaction with added hemoglobin was 0.051/day, about 3.5 times higher than the constant for the reaction with only H2O2 (0.014/day). After four weeks of treatment, 76% of the initial soil TPH concentration was removed with hemoglobin and hydrogen peroxide treatment. The removal of initial soil TPH concentration was 26% when only hydrogen peroxide was used. The soil microbial community, based on 16S rRNA gene copy number, was higher (7.1 × 106 copy number/g of bacteria, and 7.4 × 105 copy number/g of Archaea, respectively) in the hemoglobin catalyzed treatment. Our results show that TPH treatment in contaminated soil using hemoglobin catalyzed oxidation led to the enhanced removal effectiveness and was non-toxic to the native soil microbial community in the initial soil.