• Title/Summary/Keyword: biodegradation,

검색결과 1,039건 처리시간 0.027초

Biopile의 현장적용을 위한 유류오염토양의 생분해율 평가

  • 윤정기;노회정;김혁;김종하;박종겸;이민효;정일록;고성환;최상일
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.363-367
    • /
    • 2003
  • Batch experiments were performed to determine optimum conditions for biopile. The batch experiments results showed that 12.5 to 17.9% of moisture content was effective to biodegradation of petroleum hydrocarbon regardless of soil texture. Total heterotrophic bacteria populations in the inoculum-treated soil were greater than of the control and nutrient-amended soil in the early stage, but the populations in the inoculum and nutrient-amended soil were not different significantly from those in the latter stage regardless of soil texture. The same trend was observed for petroleum hydrocarbon degrading bacteria populations. The results of the biodegradation capacity experiments showed that there was a decline in the TPH concentrations during the experiments and no significant difference on the biodegradation was observed by treatment in silt soil. Changes of n-C17/pristane and n-C18/phytane ratios in all treated soil were significantly more than those of control. This is a strong indication of biodegradation. The TPH removal rate was calculated at 60% in all treated soil.

  • PDF

토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구 (A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms)

  • 정우진;장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

Rhodococcus erythropolis를 통하여 얻어진 생계면활성제에 의한 phenanthrene의 용해도 및 생분해능력 향상 (Enhancement of Phenanthrene Solubilization and Biodegradation with Biosurfactants Produced by Rhodococcus erythropolis)

  • 장재수;송창수
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.724-730
    • /
    • 2004
  • Effects of the biosurfactant produced by Rhodococcus erythropolis on the solubilization and biodegradation of phenanthrene were investigated. Based on surface tension measurements, the average critical micelle concentration of the biosurfactant was estimated to be about 16mg TOC/L. The apparent solubility of phenanthrene increased linearly with the addition of biosurfactants above the CMC, and the concentration of solubilized phenanthrene was 38.9mg/L in 322mg TOC/L biosurfactant solution. The weight-solubilization ratio of biosurfactants for phenanthrene was approximately 118.8mg/g, this value was over 5 times greater than that of sodium dodecyl sulfate. Using a known phenanthrene degrader, batch phenanthrene biodegradation experiments were conducted with and without biosurfactants in liquid culture. The rate and extent of phenanthrene mineralization by the phenanthrene degrader with biosurfactants were much greater than those without biosurfactants. The greater phenanthrene mineralization observed in the presence of biosurfactants is attributed to the increased phenanthrene concentration in the aqueous culture due to the partitioning of the compound to biosurfactant micelles. The biosurfactant did not exhibit any toxic effect on mineralization of glucose by the phenanthrene-degrader.

반연속배양의 혼합균주에 의한 Benzene, Toluene 및 Phenol 혼합물 분해 (Biodegradation of Benzne,Toluene, and Phenol by a Mixed Culture in Semicontinuous Culture)

  • 오희목;김성빈;이창호;서현효;이문호;고영희;윤병대
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.415-422
    • /
    • 1994
  • The biodegradation of aromatic compounds by a mixed culture GE1 was investigated in an artificial wastewater containing 250 mg/l of benzene, toluene, and phenol in semicontinuous culture. In the control group (no strains) with an aeration rate of 75 ml/l/min, 37% of phenol and 83% of benzene were volatilized during early 24 hrs and toluene was disappeared from the medium within 12 hrs. The biodegradation of benzene and toluene was effective in SB (strains + biofilm) treatment, while phenol was degraded more quickly in SG (strains + glucose) treatment including glucose as an additional carbon source. aromatic compounds added at a concentration of 250 mg/l were completely removed by SG treatment after 16 hrs or 32 hrs, respectively. The removal rate of COD was high as much as 80 mg/l/h in SG treatment during early period, but COD revealed a stable value of 116~140 mg/l after 12 hrs caused by increased biomass. Therefore, it is concluded that the mixed GE1 could be used for the wastewater treatment including aromatic compounds such as benzene, toluene, and phenol.

  • PDF

Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature

  • Han, Hee-Dong;Nam, Da-Eun;Seo, Dong-Hoan;Kim, Tae-Woo;Shin, Byung-Cheol;Choi, Ho-Suk
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.507-511
    • /
    • 2004
  • We have developed an injectable thermosensitive hydrogel for local drug delivery to treat cancers clinically. We selected chitosan as a polymer matrix because of its biocompatibility and biodegradability. Glycerol 2-phosphate disodium salt hydrate (${\beta}$-GP) was used to neutralize the chitosan solution to physiological pH. The chitosan solution displayed a sol-gel phase transition in a pH-and temperature-dependent manner and formed an endothermic hydrogel after subcutaneous injection into mouse in the presence of ${\beta}$-GP. Additionally, we evaluated the biodegradation of chitosan hydrogel in mice by measuring the volume of injected chitosan hydrogel after subcutaneous injection. The injected chitosan hydrogel in mice was sected and stained with hematoxylin-eosin reagent for histological observation to confirm biodegradation of the hydrogel by the infiltrated cells. Chitosan hydrogel systems that possess biocompatibility and biodegradability could be promising thermosensitive injectable materials useful as depot systems for local anti-cancer drug delivery.

호기성 분해, 혐기성 분해 및 독성을 고려한 생분해도 지표 개발 (Biodegradability Index Development Based on Aerobic Biodegradation, Anaerobic Biodegradation, and Toxicity Test)

  • 유규선;신항식
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.603-608
    • /
    • 2010
  • More than 8 millions of chemical have been used for human activities and lots of chemicals can not be degraded by microbial activities in this world. To show the biodegradability of a chemical, biodegradability index (B.I.) is suggested using aerobic biodegradability by $BOD_5$/COD, anaerobic biodegradability by methane potential (M.P.) and toxicity by the luminiscent bacteria. In this study, PVA (polyvinyl alcohol), HEC (hydroxy ethyl cellulose), 2,4,6-TCP (tri-chloro phenol) and 2,4-DCP (di-chloro phenol) are used for test chemicals. Though they show little toxicity, PAV and HEC have low B.I. because they are polymers having high molecular weight. That means that there are no bacteria that has enzyme to degrade polymer molecules. Also, anaerobic treatment is suggested better than aerobic treatment from B.I. 2,4,6-TCP and 2,4-DCP show high toxicity and have low B.I. Their low biodegradabilities seem to be originated from their toxicities. If B.I. is used in wastewater treatment, better treatment process can be suggested and finally it can lead our society to make more environment-friendly chemicals.

Enhanced Biodegradation of 2,4,6-Trinitrotoluene (TNT) with Various Supplemental Energy Sources

  • Park, Chulhwan;Kim, Tak-Hyun;Kim, Sangyong;Kim, Seung-Wook;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.695-698
    • /
    • 2002
  • The biodegradation of 2,4,6-trinitrotoluene (TNT) was performed on a laboratory scale using P. putida originally isolated from explosive-contaminated soil. One hundred mg/1 of TNT was completely degraded within 20 h under optimum conditions. Various supplemental energy sources (carbon sources, nitrogen sources, and surfactant) were tested, with the main objective of identifying an inexpensive source and enhancing the degradation rate for large-scale biodegradation. Based on the degradation rate, molasses was selected as a possible supplemental carbon source, along with NH$_4$Cl and Tween 80 as a nitrogen source and surfactant, respectively. The degradation rate increased about 3.3 fo1d when supplemental energy sources were added and the degradation rate constant increased from 0.068 h$\^$-1/ to 0.224 h$\^$-1/. These results appear to be promising in application of the process to TNT-contaminated soil applications.

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design

  • Imron, Muhammad Fauzul;Titah, Harmin Sulistiyaning
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.374-382
    • /
    • 2018
  • Petroleum hydrocarbons pollutants, such as diesel fuel, have caused ecosystem damage in terrestrial and aquatic habitats. They have been recognized as one of the most hazardous wastes. This study was designed to optimize the effect of Tween 80 concentration, nitrogen (N)/phosphorus (P) ratio and salinity level on diesel biodegradation by Vibrio alginolyticus (V. alginolyticus). Response surface methodology with Box-Behnken design was selected with three factors of Tween 80 concentration (0, 5, 10 mg/L), N/P ratio (5, 10, 15) and salinity level (15‰, 17.5‰, 20‰) as independent variables. The percentage of diesel degradation was a dependent variable for 14 d of the remediation period. The results showed that the percentages of diesel degradation generally increased with an increase in the amount of Tween 80 concentration, N/P ratio and salinity level, respectively. The optimization condition for diesel degradation by V. alginolyticus occurred at 9.33 mg/L of Tween 80, 9.04 of N/P ratio and 19.47‰ of salinity level, respectively, with percentages of diesel degradation at 98.20%. The statistical analyses of the experimental results and model predictions ($R^2=0.9936$) showed the reliability of the regression model and indicated that the addition of biostimulant can enhance the percentage of diesel biodegradation.

Pseudomonas sp.에 의한 Nonylphenol Ethoxylates의 Kinetics (Biodegradation Kinetics of Nonylphenol Ethoxylates by Pseudomonas sp.)

  • 김수정;이종근;이상준
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.271-278
    • /
    • 1993
  • Nonylphenol ethoxylates-30을 분해할 수 있는 Pseudomonas sp.를 분리, 동정하였다. Nonylphenol ethoxylates-30 의 최적분해조건은 탄소원으로 nonylphenol ethoxylates-30 1.0 g/ι, 질소원으로 ammonium nitrate 0.02 g/ι, pH 7.5, 30였다. 최적분해 조건에서 nonylphenol ethoxylates-30은 배양 30시간 후 89%가 분해되었다. 최적분해조건에서 nonylphenol ethoxylates-30의 초기농도가 각각 100 ppm, 500 ppm, 1000 ppm, 5000 ppm일 때 시간에 따른 분해율을 수식으로 설명할 수 있는 가장 적합한 분해 kinetics는 각각 first order model, Monod no growth model, Monod with growth model로 나타났다.

  • PDF