• Title/Summary/Keyword: biodegradation,

Search Result 1,045, Processing Time 0.031 seconds

Analytical Solution of Multi-species Transport Equations Coupled with a First-order Reaction Network Under Various Boundary Conditions (다양한 경계조건을 가진 일차 반응 네트워크로 결합된 다종 오염물 거동 해석해)

  • Suk, Hee-Jun;Chae, Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.46-57
    • /
    • 2011
  • In this study, analytical solution of multip-species transport equations coupled with a first-order reaction network under constant concentration boundary condition or total flux boundary condition is obtained using similarity transformation approach of Clement et al. (2000). The study shows the schematic process about how multi-species transport equations with first-order sequential reaction network is transformed through the similarity transformation approach into independent and uncoupled single species transport equations with first-order reaction. The analytical solution was verified through the comparison with popular commercial programs such as 2DFATMIC and RT3D. The analytical solution can be utilized in nuclear waste sites where radioactive contaminants and their daughter products occur and in industrial complex cities where chlorinated solvent such as PCE, TCE, and its biodegradation products produces. In addition, it can help the verification of the developed numerical code.

Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization (열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구)

  • Choi, Jung Su;Kim, Hyun Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Effects of Ultrasonic Pretreatment on Sludge Biodegradability (초음파 전처리에 의한 슬러지 생분해성 영향 평가)

  • Kim, Ju-Hyun;Lee, Kang-Hoon;Nguyen, Hai;Yeom, Ick-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.611-616
    • /
    • 2011
  • The impacts of ultrasonic pretreatment on the biodegradability of domestic sewage sludge were evaluated through a series of anaerobic digestion experiments in batch system. The gas and methane production from the sludge samples pretreated by an ultrasonic tool with different durations were measured with time. Although the biogas production increased with the extent of sludge solubilization and the period of ultrasonic pretreatment, the enhancement of sludge biodegradability was much more sensitive to the pretreatment for the relatively short periods. Most of the enhanced biodegradability by the pretreatment was appeared in the early stage of anaerobic digestion, less than 6 days. The maximum biogas production per day was observed between 4 to 6 days when the sludge was pretreated less than 10 minutes while it was obtained in the beginning for the sludge pretreated longer periods. The results suggest that the repeated alternation of low strength ultrasonic pretreatment and anaerobic digestion may be more effective than the combination of one time pretreatment for a relatively long period and following anaerobic digestion.

The Influence of β-TCP Content on the Preparation of Biodegradable β-TCP/PLGA Composites Using Microwave Energy (마이크로파에 의한 생분해성 β-TCP/PLGA 복합체의 제조시 β-TCP 첨가량에 따른 영향)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Biodegradable $\beta$-tricalcium phosphate ( $\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in-situ polymerization with microwave energy. The influence of the $\beta$-TCP content in $\beta$-TCP/PLGA composites on the molecular weight, crystallinity, microstructure and mechanical properties was investigated. As the molecular weight of composites decreased, the $\beta$-TCP content increased up to 10 wt.%, while the excess addition of the $\beta$-TCP content above 10 wt.% the molecular weight increased with increasing of the $\beta$-TCP content. This behavior would be due to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young's modulus of the $\beta$-TCP/PLGA composites was proportional to the molecular weight of PLGA. The bending strength of the $\beta$-TCP/PLGA composites ranged from 18 to 38 MPa, while Young's modulus was in the range from 2 to 6 GPa.

Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life

  • Bugenyi, Andrew Wange;Cho, Ho-Seong;Heo, Jaeyoung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.247-262
    • /
    • 2020
  • Birth weight and subsequent weight gain is of critical importance in the survival and performance of piglets on a commercial swine farm setting. Oropharyngeal microbiome could influence immunity, and feeding behavior thus impacting health and weight gain. We used 16S rRNA gene sequencing to profile the composition and predicted metabolic functionality of the oropharyngeal microbiota in 8 piglets (4 with a birthweight ≤ 1.0 kg and 4 with a birthweight ≥ 1.7 kg) at 11, 26, and 63 days of age. We found 9 genera that were significantly associated with average daily gain (ADG) at 11 days (false discovery rate, FDR < 0.05) and 26 days of age (FDR < 0.1), respectively. The microbial functional profile revealed several pathways associated with ADG (FDR < 0.05). Among these, pathways related to degradation of catechols showed a positive association with ADG at 11, 26, and 63 days of age, implying a potential to breakdown the host-derived catecholamines. We also noted that pathways related to the biodegradation of nucleosides and nucleotides increased with ADG during the pre-weaning phase, while those involved in their biosynthesis decreased. Our findings provide insights into the oropharyngeal microbial memberships and metabolic pathways that are involved in a piglet's weight gain. Thus, providing a basis for the development of strategies aimed at improving weight gain in pigs.

Isolation and Characterization of Bacteria Able to Grow with Phenol at High Concentrations for Bioremediation (생물학적 환경정화를 위한 고농도 페놀에서 생육할 수 있는 세균의 분리 및 특성)

  • 박연규;손홍주
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • For the biological treatment of industrial wastewater containing high concentration of phenol, isolation and characterization of phenol - degrading bacterium were carried out. A bacterial strain P2 capable of degrading phenol was isolated from contaminated soils by enrichment culture technique and identified as the genus Rhodococcus by morphological, cultural, biochemical characteristics, and Biolog system. The optimal medium composition and cultural conditions for the growth and degradation of phenol by Rhodococcus sp. P2 were 0.1% of (NH$_4$)$_2$SO$_4$, 0.2% of KH$_2$PO$_4$, 0.25% of Na$_2$HPO$_4$ㆍ12$H_2O$, 0.2% of MgSO$_4$ㆍ7$H_2O$, and 0.008% of CaC1$_2$ㆍ2$H_2O$ along with initial pH 8.5 at 3$0^{\circ}C$. Rhodococcus sp. P2 could grow with phenol as the sole carbon source up to 1,800 ppm in batch cultures, but did not grow in medium containing above 2,000 ppm of phenol. When 800 ppm phenol was given in the optimal media, Rhodococcus sp. P2 completely degraded it within 24 h. Meanwhile, 1,800 ppm of phenol was degraded within 9 days. Rhodococcus sp. P2 could utilize toluene, n-hexane, xylene and benzene as sole carbon source .

  • PDF

Technique for Using Fly Ash as a Bedding Materials at Livestock House (석탄회의 축사 깔짚 이용기술)

  • 고영두;김재황;김두환;고병두;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • This study was carried out to improve utilization of substitute fly-ash in bedding material of animal waste treatments. The amount used of fly-ash used in a pigpen or beef stall was 50% lower than that of existing bedding material of animal waste treatments. From the results, substitution effect of fly-ash put over the floor of the stable became much better. Effects of processed fly ash as a spread straw decreased ammonia(NH3) and Hydrogensulfide (H2S) gas at beef stall, but there was no benefit of replacement terms. Effect of processed fly ash as a spread straw increased 4∼5 times replacement terms more than control NH3 and H2S gas was decreased. A lot of maggots and porasites were grown at sawdust pig farm, but fly ash inhibited to grow maggots and paraeters. In conclusion, as substituting fly-ash for 5% sawdust(DM basis) in making animal waste into a compost with fly ash, we can reduce the sawdust purchasing costs and produce the high quality of a compost, especially a pollutant as NH3 and H2S gas, etc. from the process of biodegradation, and as substituting fly-ash(1,540 won per ton ; can be extended the replacement period of spreading straw approximatively 4∼5 times) for sawdusts(111,000 won per ton) will increase a real income in livestock house.

Biological Removal of Explosive 2,4,6-Trinitrotoluene by Stenotrophomonas sp. OK-5 in Bench-scale Bioreactors

  • Oh, Kye-Heon;Lee, Myung-Seok;Chang, Hyo-Won;Kahng, Hyung-Yeel;So, Jae-Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • The biological removal of 2,4,6-trinitrotoluene (TNT) was studied in a bench-scale bioreactor using a bacterial culture of strain OK-5 originally Isolated from soil samples contaminated with TNT. The TNT was completely removed within 4 days of incubation in a 2.5 L bench-scale bioreactor containing a newly developed medium. The TNT was catabolized in the presence of different supplemented carbons. Only minimal growth was observed in the killed controls and cultures that only received TNT during the incubation period. This catabolism was affected by the concentration ratio of the substrate to the biomass. The addition of various nitrogen sources produced a delayed effect for the TNT degradation. Tween 80 enhanced the degradation of TNT under these conditions. Two metabolic intermediates were detected and identified as 2-amino-4, 6-dinitrotoluene and 4-amino-2, 6-dinitrotoluene based on HPLC and GC-MS analyses, respectively. Strain OK-5 was characterized using the BIOLOG system and fatty acid profile produced by a microbial identification system equipped with a Hewlett Packard HP 5890 II gas chromatograph. As such, the bacterium was identified as a Stenotrophomonas species and designated as Stenotrophomonas sp. OK-5.

Preparation of Electrospun Oxidized Cellulose Mats and Their in vitro Degradation Behavior

  • Khil Myung Seob;Kim Hak Yong;Kang Young Sic;Bang Ho Ju;Lee Douk Rae;Doo Jae Kyun
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • This paper investigated the effect of biodegradation behavior on the oxidation of cellulose nanofiber mats. The cellulose mats were produced through electro spinning. The diameter of an electrospun fiber varied from 90 to 240 nm depending on the electrospinning parameters, such as the solution concentration, needle diameter, and rotation speed of a grounded collector. Oxidized cellulose (OC).mats containing different carboxyl contents were prepared using $NO_2$ as an oxidant. The total carboxyl content of the cellulose nanofiber mats obtained after oxidation for 20 h was $20.6\%$. The corresponding carboxyl content was important from a commercial point of view because OC containing $16-24\%$ carboxyl content are used widely in the medical field as a form of powder or knitted fabric. Degradation tests of the OC mats were performed at $37^{\circ}C$ in phosphate-buffered saline (pH 7.4). Microscopy techniques were introduced to study the morphological properties and the degradation behavior of the OC mats. Morphological changes of the mats were visualized using optical microscopy. Within 4 days of exposure to PBS, the weight loss of the OC mats was $>90\%$.

Macro-Kinetics of Biofiltration for Odor Control:Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.165-174
    • /
    • 2002
  • A dual -column biofilter system with two different composts was used to investigate the macro-kinetics of dim-ethyl disulfide (DMDS) degradation. The biofilter columns were filled with compost mixtures up to one meter, The gas How rate and DMDS concentration to the biofilters were varied to study their effect on the removal characteris-tics of DMDS. It was found that the biodegradation of DMDS was governed by zero-order reaction -limited macro-kinetics for inlet DMDS concentrations between 10 and 55 ppmv. The overall average zero-order kinetic coeffi-cient for DMDS removal by compost was 0.50 ($\pm$0.1) ppm/sec for both compost mixtures studied. Variations in individual kinetic coefficients were observed due to varying environmental conditions, such as pH and temperature. The kinetic coefficients determined are specific to the system discussed in this work. During high acidity conditions in the filter beds, methyl mercaptan (MM) was observed in the gas samples collected. Appearance of MM was pro-bably due to decreased microbial activity in the lower portions of the biofilter. Considering the neutral pH range required and the presence of methyl mercaptan, it is likely that the microorganisms present in the biofilters used in this research are similar to the T. thioparus (strain E6) species.