• Title/Summary/Keyword: biodegradation,

Search Result 1,045, Processing Time 0.026 seconds

Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성)

  • Seo, In-Suk;Son, Hee-Jong;Choi, Young-Ik;Ahn, Wook-Sung;Park, Chung-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2007
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

Biodegradation of Dibenzo-p-dioxin and Dibenzofuran by Bacteria

  • Armengaud, Jean;Timmis, Kenneth N.
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.241-252
    • /
    • 1997
  • Polychlorodibenzofurans and polychlorodibenzo-pdioxins are among the most toxic xenobiotics released into the biosphere and the cause of significant public concern because of their apparent ubiquityalbeit at low levels- in food and environment. Several bacteria able to degrade nonchlorinated dioxin and dibenzofuran and in some cases to attack chlorinated analogues have recently been isolated. This opens up the possibility that bioremediation processes may ultimately be developed to eliminate these toxic compounds from contaminated sites. In this review we summarize current knowledge on the genetics and biochemistry of dioxin and dibenzofruan degradation by Sphingomonas sp. RW1, a gram-negative bacterium, and highlight the unusual nature of the genetic organization of these pathways.

  • PDF

Isolation of Polyacrylamide-degrading Microorganisms from Soil

  • Matsuoka, H.;Ishimura, F.;Takeda, T.;Hikuma, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.327-330
    • /
    • 2002
  • Two polyacrylamide degrading bacterial strains, No. 2 and No. 11, were isolated from soil, and identified as Bacillus sphaericus No.2 and Acinetobacter sp. No. 11, respectively. Both strains grew on medium containing polyacrylamide as sole carbon and nitrogen sources. B. sphaericus No. 2 and A. sp. No. 11 reduced by 16% and 19%of the initial polyacrylamide concentration, respectively. Optimal pH and temperature in growth of Acinetobacter sp. No. 11 were 8.0 and $37^{\circ}C$, respectively. After 14-day cultivation of A. sp. No. 11, the average molecular weight of polyacrylamide has been shifted from $2.3{\times}10^6\;to\;0.5{\time}106$.

Purification and Characterization of Carboxymethyl Cellulase from Bacillus stearothermophilus No. 236

  • Kim, Sohng-Hwan;Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.305-309
    • /
    • 1997
  • Bacillus stearothermophilus No. 236, an effective xylanolytic bacterium, produced an extracellular carboxymethyl cellulase when the strain was grown on xylan. The carboxymethyl cellulase was purified to homogeneity as judged by SDS-PAGE and zymogram, The carboxymethyl cellulase had a pI of 4.0, and a molecular mass of 95 kDa. The highest level of enzyme activity was observed at pH 6.5 and $60^{\circ}C$. The $K_m$, and $V_{max}$ values of the enzyme to carboxymethyl cellulose were 20.8 mg/ml and $0.63 {\mu}mole$/min/mg protein, respectively, The enzyme was found to act also on filter paper and xylan as well as carboxymethyl cellulose. Therefore, it is expected that this xylanolytic strain isolated from soil could be efficiently used for xylan biodegradation.

  • PDF

Intravascular Tumour Targeting of Aclarubicin-loaded Gelatin Microspheres Preparation biocompatibility and biodegradability

  • Lee, Kang-Choon;Koh, Ik-Bae
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 1987
  • This study is to evaluate the potential use of aclarubicin-loaded gelatin microspheres as an intravascular biodegradable drug delivery system for the regional cancer therapy. The diameter of the microspheres prepared by water in oil emulsion polymerization could be controlled by adjusting the stirring rate in the range of 10-50 $\mu$m : D(in $\mu$m) = -73.8 log (rpm) + 262.7. The addition of proteolytic enzyme increased the in vitro aclarubicin release but it did not change the amount of the initial burst release which reached about 45%. Microspheres injected intravenously into the mouse tail vein embolized only to the lung when observed by fluorescence microscopy. From histological examination following injection of gelatin microspheres into mouse femoral muscle, mild inflammation was observed from the appearance of neutrophils after 2 days and rapid repair process was confirmed thereafter. Biodegradation process of gelatin microspheres lodged on the pulmonary capillary bed was followed up by microscopic observation; degradation was taking place by about 36 hrs, followed by severe damage on the spheerical shape and microspheres was no longer found 10 days after injection.

  • PDF

A Study on Modeling and Simulation of Wastewater Treatment Process Considering VOC Emissions (VOC 방출을 고려한 폐수처리공정의 모델링 및 모사에 관한 연구)

  • Seong, Kyoung Won;Chun, Sang Ki;Yi, Sung Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 1999
  • ASPEN PLUS, a steady-state simulator, was used in this study for predicting emissions of VOCs and tracing the fate of all compounds in biodegradation processes. Mathematical models for the processes such as volatilization, reaction and clarification were adopted from literatures. Unlike most previous simulations that various pollutants were considered as a single component, COD or BOD, four components of water, biomass, VOCs and COD were included in this simulation. Sensitivity analysis of several physical parameters on the performance of the WWTP was conducted. Model predictions of VOCs emissions agreed well with the plant data. The simulator could provide design conditions for a future WWTP as well as monitoring/control regimes to an existing WWTP.

  • PDF

Complete genome sequence of the acidic cellulase producer Bacillus amyloliquefaciens ATC6

  • Kim, Sang Hoon;Oh, Ju Kyoung;Kim, Yong Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.761-763
    • /
    • 2020
  • Here we report the complete genome sequence of Bacillus amyloliquefaciens ATC6, which produces acidic cellulase, isolated from pig feces. The genome is 4,062,817 bp in length and has a guanine-cytosine (GC) content of 46.27%. Among the predicted 3,913 protein-coding genes, two glucanase genes, which are involved in lichenan and cellulose degradation, were found. This genome analysis helps clarify the mechanism involved in cellulose biodegradation and support its application for efficient use of livestock feeds.

Effects of Detergent and other Pollutants related Domestic Sewage on Water Pollution (세제 및 생활하수 관련 오염성분이 수질오염에 미치는 영향)

  • Kim, Mann-Young;Choi, Ung-Su;Kim, Jae-Yong;Kim, Kwang-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.564-568
    • /
    • 1993
  • By measuring the COD (chemical oxygen demend) of dish washing detergents being sold at market and pollutants connected with domestic sewage, we compared the amounts of water pollutants of one with other and carried out the experiments of ultimate biodegradation as against these samples. Also we combined our experimental results and circumstances of water pollution and wastewater treatments to the sewage system, compared the effects of synthetic detergent on water pollution with soap and the other pollutants and investigated results of our research.

  • PDF

Effect of Substitute Processed Dustproof Fly-Ash as a Bedding Materials at Pigpens (방진처리 석탄회의 돈사깔짚 대체 . 이용효과)

  • 김영민;김재황;김삼철;하홍민;고영두
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.133-140
    • /
    • 2000
  • This study was carried out to determine a suitable mixing rate to utilize the PDF as a bedding materials at the pigpens and investigate the effect of substitute processed dustproof fly-ash(PDF) on the odor. In proportion to the increase of substitute rate of the PDF, the utilizable period was extended, and there was a little change of the moisture in the bedding materials. At all the treatment of PDF, there was the significant effect on the maggots and parasites but it didn\`t hinder in the biodegradation. According to highly mixing rate, PDF decreased in the noxious gas ($NH_3$ and $H_2$S) emission. In conclusion, the mixing rate of 30% or above this substituted level will increase replacement terms, and reduce the sawdust cost and the pollutions of breed pigs.

  • PDF

Biofiltration Technology Application for Livestock and Compost Facility Odor Control (축사와 퇴비 시설 취기제어를 위한 생물학적 탈취 기술의 적용)

  • 홍지형
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.153-160
    • /
    • 2000
  • Odor control for livestock and compost facilities has focused on manure handling and treatment during storage and land application, however, large amount of malodorous air is emitted and it is one of main sources of malodour in livestock farming. Biological treatment or biodegradation involves converting an organic contaminant to carbon dioxide and water using natural bacteria. Biofiltration is an effective air pollution control technology that uses microorganisms to breakdown gaseous contaminants and produce innocuous end products. Investment and operating costs on the biofiltration are lower than for thermal and chemical oxidation processes. This paper is intended to provide an overview of basic design and operating criteria for biofilters to control odors from livestock and compost facilities.

  • PDF