• Title/Summary/Keyword: biodegradation,

Search Result 1,045, Processing Time 0.027 seconds

Comparative Biodegradation of HDPE and LDPE Using an Indigenously Developed Microbial Consortium

  • Satlewal, Alok;Soni, Ravindra;Zaidi, Mgh;Shouche, Yogesh;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.477-482
    • /
    • 2008
  • A variety of bacterial strains were isolated from waste disposal sites of Uttaranchal, India, and some from artificially developed soil beds containing maleic anhydride, glucose, and small pieces of polyethylene. Primary screening of isolates was done based on their ability to utilize high- and low-density polyethylenes (HDPE/LDPE) as a primary carbon source. Thereafter, a consortium was developed using potential strains. Furthermore, a biodegradation assay was carried out in 500-ml flasks containing minimal broth (250ml) and HDPE/LDPE at 5mg/ml concentration. After incubation for two weeks, degraded samples were recovered through filtration and subsequent evaporation. Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) were used to analyze these samples. Results showed that consortium-treated HDPE (considered to be more inert relative to LDPE) was degraded to a greater extent (22.41% weight loss) in comparison with LDPE (21.70% weight loss), whereas, in the case of untreated samples, weight loss was more for LDPE than HDPE (4.5% and 2.5%, respectively) at $400^{\circ}C$. Therefore, this study suggests that polyethylene could be degraded by utilizing microbial consortia in an eco-friendly manner.

Biodegradation Characteristics of Toluene in a Soil-Bioreactor (토양생물반응기내 Toluene의 분해 특성)

  • Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate the optimal conditions for biodegradation of toluene by Pseudomonas fluorescens KCTC 1767 in a batch soil-bioreactor, the effects of rpm change from 60 to 180, and temperature change from $15^{\circ}C$ to $30^{\circ}C$ in a batch culture and the flow rate change from 55 mL/min to 85 mL/Min in soil-bioreactor on the biodegradation of toluene were studied. In a batch culture the optimal operating conditons were 60 rpm, and $30^{\circ}C$ at initial pH 7, In a soil-bioreactor the optimal flow rate was 55 mL/min in the flow rate of circulation. The lower flow rate of circulation may help to biodegrade toluene adsorped in soil and dissolved in underground water.

  • PDF

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

STUDIES ON THE TOXICITY AND BIODEGRADATION OF MINOCLINE STRIP IMPLANTED IN GINGIVA (미노클린 첨부제의 구강점막 독성 및 치은조직내에서의 생분해에 관한 연구)

  • Rim, Byung-Moo;Kim, Hyung-Seop;Han, Sang-Sup;Lee, Ho-Il;Chae, Hyun-Sok
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.397-405
    • /
    • 1994
  • Minocline Strip(MS), a local drug delivery developed as a controlling means for microoragnisms in gingival wound and periodontitis, was implanted in the gingiva of experimental animals. The toxic effects and biodegradation of MS were studied in respect to pathological changes induced in gingival tissue. The experimental animals treated with MS had not showed significant difference in symptom, body weights, feed and water intake, and blood analysis throughout 150 days of experimental period, but revealed significantly increased values of total WBC counts and AST (SGOT) on the 7th day, compared with controls. The treated animals revealed petechial hemorrhage and severe edema accompanying degeneration and necrosis of damaged muscle fibers around the surgical wound, but no local inflammatory reaction and concerned lesions were found. The implanted MS became encapsulated by thin connective tissue, and its size and color diminished gradually according to the experimental term. The MS-like material appeared in the nearby lymphatics on the 110th day. The implated MS remained as fine granular particles or disappeared on the 130th day, and the decrease of its volume and density were variable depending on each individual. These results indicate that long-term implantation of MS may not produce inflammation or toxic effects, and eventually lead to complete biodegradation.

  • PDF

Biodegradation of Mixture of Benzoate and m-Toluate with Pseudomonas sp. (Pseudomonas sp. 의한 Benzoate와 m-Toluate 혼합물의 생분해)

  • 정준영;김교창;조재민
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • Biodegradation of benzoate and m-toluate was investigated using a Pseudomonas sp. isolated in a continuous culture for 45 days with a step-wise increase of the subsrates. The optimum mixture ratio of benzoate and m-toluate was 75% and 25%, respectively. During 45-day culture, removal of benzoate and m-toluate, which was replaced 2,000 ppm on the 30th day were 94% and 79%, respectively, when COD removal rate was 80%. The enzymatic activity of catechol 1,2-dioxygenase increased and that of catechol 2,3-dioxygenase decreased as the concentration of m-toluate was increased. These results suggested that m-toluate induced enzyme activity for degradation of benzoate. The shape of isolated strain in the continuous culture was investigated with SEM and the results showed that the cell shape was more damage according to the higher concentration of aromatic hydrocarbons. Therefore, we suggested that the tolerance against aromatic hydrocarbons was related to not only enzymatic activity but also characteristic of cell membrane or cell wall.

  • PDF

Influences of Mixing Frequency on the Composting Performance of the Broiler and Dairy Manure Mixtures (퇴비재료의 교반빈도가 육계분과 유우분 혼합물 퇴비화 성능에 미치는 영향)

  • Park K.J.;Bae Y.H.;Hong J.H.;Wi T.W.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.41-44
    • /
    • 2006
  • Broiler manure has much nutrient that can be used as the organic fertilizer to enhance the fertility of soil. However, if it is used directly without biodegradation of organic materials and destruction of weed seed and harmful bacteria, it can produce the generation of weed and disease of plant. Composting of manure is a biodegradation of organic materials into inorganic materials and humus. To proceed biodegradation of manure effectively and enhance the composting performance, optimum environmental condition for microbial growing should be maintained. Environmental variables which can influence the growing activity of microbes are moisture content, pH, porosity, C/N of the composting materials and oxygen supply quantity. Oxygen and porosity are usually supplied by aeration or mixing of materials. This study was intended to investigate the effect of mixing frequency on the composting performance. Mixing of composting materials was performed by turning the bioreactor up and down by hand without any mechanical energy. The broiler manure was captured from the greenhouse type broiler ham as the compounds of broiler manure and rice-hulls, which were used as the base materials. To compost the compounds of broiler manure and rice-hulls, dairy manure was mixed to get appropriate characteristics of composting material. Composting temperature over $55^{\circ}C$ for killing pathogen and weed seed was maintained for longer period with increase of mixing frequency.

  • PDF

Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier (생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발)

  • 왕수균;오재일;배범한
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

Biodegradation of crude oil hydrocarbons by Acinetobacter sp. isolated from activated sludge (활성슬러지에서 단리한 Acinetobacter sp.에 의한 원유탄화수소분해)

  • Dong-Hyuk CHOI;Dong Hoon LEE
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.97-108
    • /
    • 2000
  • A Gram-type negative bacteria that can utilize crude oil as the sole source of carbon and energy was isolated from an activated sludge of a local sewage treatment plant and identified tentatively as belonging to the genus Acinetobacter. The isolate could degrade n-alkanes and unidentified hydrocarbons in crude oil and utilize n-alkanes, hydrophobic substrates, as sole carbon and energy sources. n-Alkanes from tridecane (Cl3) to triacontane (C30) in crude oil were degraded simultaneously with no difference in degradation characteristics between the two close odd and even numbered alkanes in carbon numbers. The linear growth of the isolate and the degradation characteristics of Pr-alkanes suggested that the transport of substrates from the oil phase to the site where the substrates undergo the initial oxidation in microorganism might be the rate limiting in the biodegradation process of crude oil constituents. The remainder fraction of substrates after cultivation was considered to reflect the hydrocarbon inclusions in the cell mass, characteristics in Acinetobacter species, and to control the transport of substrates from crude oil phase. On the basis of the results, the isolate was considered to play an important role in the degradation study of hydrophobic environmental pollutants.

  • PDF

Polyvinyl Alcohol Degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in Dyeing Wastewater

  • Choi, Kwang-Keun;Park, Chul-Hwan;Kim, Sang-Yong;Lyoo, Won-Seok;Lee, Sang-Hun;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1009-1013
    • /
    • 2004
  • The purpose of this study was to investigate the degradation of PVA (polyvinyl alcohol) contained in dyeing wastewater by a mixed culture of Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508. Firstly, synthetic wastewater which contained different initial concentrations of PVA varying from 50 to 3,500 mg/l were tested to obtain optimal PVA biodegradation activity of isolated strains, and the above two strains were found to degrade PVA up to 90%, when the initial concentration of PVA was 750 mg/l and below. Next, dyeing wastewater was tested by a nixed culture of the two isolated strains, and 42% and 55% of the initial concentrations of PVA and COD, respectively, was removed after five days. MLSS was gradually increased from an initial 1,400 to 2,500 mg/l, and the pH was also increased from 5.1 to 7.8. Sterilized dyeing wastewater was tested to find the effect of strains only on the biodegradation of PVA, and PVA degradation ratio and COD removal ratio were 50% and 72.8%, respectively. Thus, the results indicated that these two strains have good ability to degrade PVA and remove COD in dyeing wastewater, Finally, it is expected that if these two strains were used in the dyeing wastewater treatment, good efficiency for PVA degradation and COD removal could be achieved.

Release of Organic Matter and Behavior of Nitrogen in the Degradation of Sewage Sludge Using Ultrasound (초음파를 이용한 하수 슬러지 분해에서 유기물 방출과 질소 거동)

  • Yoon, Yong-Soo;Kang, Gwang-Nam;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 2002
  • The sewage sludge with concentrated MLSS, ranging from 5967 to 8400mg/L was degraded by ultrasound. In this study, ultrasound treatment was used to investigate the behavior characterization of SBOD, sludge biodegradation, C/N ratio, TN, turbidity and sludge morphology. From the experimental results of C/N ratio change and TN removal, the optimal irradiation time was found to be 10 minutes. The results showed the relative index of sludge biodegradation(SBOD/TCOD) was enhanced to 0.76 from the initial value of 0.013 at the 5967mg/L MLSS, during the 60minutes treatment. Throughout this research, the results provide useful engineering reference data for reuse of sewage sludge using ultrasound.

  • PDF