• Title/Summary/Keyword: biodegradation,

Search Result 1,040, Processing Time 0.03 seconds

Biodegradation of crude oil in soil slurry phase by Nocardia sp.

  • Ko, Bum-Jun;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.114-117
    • /
    • 1996
  • Biodegradation potential of crude oil has been studied in liquid and soil slurry culture. Studies were performed to optimize the factors affecting metabolic activity. Arabian Light(sulfur content 1%) was used as a representative crude oil and Nocardia sp. was selected as an oil degrading microorganism based on its ability to degrade and emulsify Effects of various nutritional and environmental conditions as well as emulsification and surface tension were observed. Tentative optimization of environmental and nutritional condition were as follow; pH 8, sodium nitrate as inorganic nitrogen source, yeast extract 0.05%, phosphate concentration 0.25% and glucose addition of 1.0% (w/v basis), extent of degradation to 78 %.

  • PDF

Preliminary Study of Bioremediation in Diesel Contaminated Soil (디젤 오염토양의 생물학적 복원에 관한 기초연구)

  • 김선영;권수열;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • The purpose of study is to evaluate the effects of physical parameters on diesel biodegradation in diesel contaminated soil. The parameters applied are concentration, temperature, moisture contents, electron acceptor(O$_2$). The results of this study showed that diesel were degraded faster at high temperature and moisture contents than at low temperature and moisture content. However concentration effect study indicates that diesel were more faster degraded at low concentration than at high concentration. The results of electron acceptor test showed concentration of oxygen did not affect the biodegradation rate of diesel in oxygen condition(10, 20%) of this study.

  • PDF

Biobarrier를 이용한 유기오염물질의 생물학적분해모의를 위한 수치모델개발

  • 왕수균
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.137-140
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant degraded through cometabolism in dual-porosity soils during the in situ bioaugmentations. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept [Molz et at., 1986〕 were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailablity of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective in situ bioaugmentation scheme.

  • PDF

Optimal Remediation Design Considering Effects of Degradation Processes : Pumping strategy with Enhanced Natural Attenuation

  • Park Dong-Kyu;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.371-374
    • /
    • 2005
  • We accomplished optimization for pump and treat (P&T) designs in consideration of degradation processes such as retardation and biodegradation, which are significant for contaminant fate in hydrogeology. For more desirable remediation, optimal pumping duration and minimum pumping rate constraint problems are studied. After a specific P&T duration, it replaces the P&T with the enhanced natural attenuation (ENA), which induces aerobic biodegradation by maintaining oxygen concentration. The design in this strategy carries out the optimization for the number and locations of oxygen injection wells.

  • PDF

The Study of Microbial Population & Dynamics in Hydrocarbon Contaminated Areas (유류오염지역의 미생물 분포 및 활성도에 관한 연구)

  • 김무훈;김순기;이원권;경우성;박덕신
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.28-31
    • /
    • 1999
  • The purpose of this study is to see the effect of microbial population and dynamics of the indigeonous microorganisms on hydrocarbon contaminated areas. The microbial structures and activities to determine the microbial capabilities of the contaminated sites are very important for the remedial action technology selection. Throughout microbial studies on different conditions by ETS(Electron Transport System) and microbial activity analysis, it was found that aeration and water contents are the most important factors in this site remediation. According to test results, Burkholderia spp. was dominant species, and acclimation is also an important factor for the accerelated biodegradation.

  • PDF

Evaluation of Pretreatment Processes for Dissolved Organic Carbon Removal in a Desalination Process (해수담수화에서 용존유기물을 제거하기 위한 전처리 공정의 평가)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.447-451
    • /
    • 2004
  • The various pretreatment processes were evaluated to remove organic pollutants of weathered oil contaminated seawater(WOCS) for reverse osmosis desalination process, Biodegradation, coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration were used to evaluate the potential of organic pollutants removal in WOCS. Dissolved Organic Carbon(DOC) was almost not removed by biodegradation in WOCS. DOC was removed by 25% and 10% with the addition of $FeCl_3$ and PAC in WOCS, respectively. The removal efficiency using ultrafiltration(WOCS 500) was about 20% of DOC and 40% of $E_{260}$, respectively. In AOP application of WOCS, the removal of organic materials was improved up to 60% by the combination of $UV/O_3$ compared to UV process. However, 98% of DOC in woes could be removed by granular activated carbon filtration. It is revealed that activated carbon filtration is the best process for the pretratment of DOC removal.

Enhanced Biodegradation of Environmental Allergen by a vgb-containing Burkholderia cepacia

  • Kim, Mi-Sun;Yoon, Suk-Ran;Jun, Woo-Jin;Park, So-Young;Yang, Young;Shim, Sang-In;Hwang, Kwang-Woo;Chung, Jin-Woong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.262-267
    • /
    • 2005
  • Using genetic engineering, the Vitreoscilla (bacterial) hemoglobin gene (vgb) was integrated stably into the chromosomes of and Burkholderia cepacia. Similar to previous results, the wild type VHb improved growth for Burkholderia cepacia and degradation of benzoic acid under both normal and low aeration conditions. The stable expression of VHb enhanced these parameters. The results demonstrate the possibility that the positive effects provided by VHb may be augmented by protein engineering.

Synthesis of Biodegradable Polymers with Carbon Dioixde (이산화탄소를 이용한 생분해성 고분자의 합성)

  • Shin Sang Chul;Shin Jae Shik;Lee Yoon Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.521-525
    • /
    • 2004
  • Biodegradation of poly(ethylene carbonate) (PEC) and their terpolymers has been investigated in vitro. PEC has been synthesized with ethylene oxide (EO) and carbon dioxide, which is one of the greenhouse gases using Zinc glutarate has been used as catalyst Carbonate terpolymers have been prepared by the use of EO, cyclohexene oxide(CHO), and carbon dioxide. High biodegradability of PEC and terpolymers with EO. has been observed. Very low biodegradation of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) has been shown. The weight loss, FT-IR and SEM have been employed to characterize biodegradability.

  • PDF

Degradation of MS(Linear Alkylbenzene Sulfonate) by Plasmid (LAS(Linear Alkybenzene Sulfonate)의 Plasmid에 의한 분해)

  • 차전옥;유진삼;백형석
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.158-163
    • /
    • 1994
  • Microorganisms capale of utilizing linear alkylbenzene sulfonates(LAS) as sole carbon source were isolated from industrial effluent by using LAS agar plates. The isolated strains were identified as Salmonella sp(BC-2) and Escherichia sp.(BC-3) from the results of morphological, cultural and biochemical tests. The optimal condition for the growth and biodegradation of LAS was the initial pH 7.0 and LAS concentration 0.1%. The isolated BC-2 and BC-3 strains harbored plasmid and LAS-degrading activity was lost when the plasmids were cured by mitomycin C. The plasmids were transformed into E. coli and transformants have the LAS-degrading activity. Isolated strains were examined for primary biodegradation rate of LAS in the medium by methylene blueactive substance(MBAS) method. Of these isolates, BC-2 and BC-3 strains degradated LAS upto 60% and high resistant to CdCl$_{2}$ and HgCl$_{2}$. Isolated strains were sensitive to chloramphenicol, kanamycin, rifampicin, streptomycin and tetracycline but resistant to ampicillin and lincomycin.] Its minimal inhibitory concentration(MIC) for ampicillin was more than 1500 $\mu $g/ml.

  • PDF

Biodegradation of Endocrine-disrupting Phenolic Compounds Using Laccase Followed by Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.294-298
    • /
    • 2003
  • Endocrine-disrupting phenolic compounds in the water were degraded by laccase from Trametes sp. followed by activated sludge treatment. The effect of temperature on the degradation of phenolic compounds and the production of organic compounds were investigated using endocrine-disrupting chemicals such as bisphenol A, 2.4-dichlorophenol, and diethyl phthalate. Bisphenol A and 2.4-dichlorophenol disappeared completely after the laccase treatment, but no disappearance of diethyl phthalate was observed. The Michaelis-Menten type equation was proposed to represent the degradation rate of bisphenol A by the lacasse under various temperatures. After the laccase treatment of endocrine-disrupting chemicals, the activated sludge treatment was attempted and it could convert about 85 and 75% of organic compounds produced from bisphenol A and 2.4-dichlorophenol into H$_2$O and CO$_2$, respectively.