• Title/Summary/Keyword: biodegradability.

Search Result 476, Processing Time 0.028 seconds

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Biodegradability and Risk Assessment of Biomass-based Polymeric Materials

  • Han, Song Yi;Park, Chan Woo;Jang, Jae Hyuk;Lee, Seung Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.297-302
    • /
    • 2015
  • With the intention to solve environmental problems caused by synthetic plastics from petroleum resources, biodegradable polyurethane foams and thermosetting moldings were prepared from biomass, such as wood and wheat bran by liquefaction method. Biodegradability of these biomass-based polymeric materials was investigated. In activated sludge, polyurethane foams from liquefied wheat bran and thermosetting molding from phenolated wood were decomposed approximately 14% and 29% for 20 days, respectively. One of the wood fungi, Coriolus versicolor was able to grow without supplemental nutrition, only with distilled water and polyurethane foam as a nutrition source. Risk assessments were also conducted and results showed that estrogenicity, mutagenicity, and carcinogenicity were not observed in the extractives of biomass- based polymeric materials.

Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method

  • Lee, Su-Kyong;Seong, Dong-Gi;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.

Pure Culture Assay with Streptomyces viridosporus T7A for Biodegradability Determination of Oxidized Potato Starch/Polyethylene Films

  • Kim, Meera;Kim, Sung-Hong
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.112-116
    • /
    • 2001
  • Oxidized potato starch/polyethylene (PE) cast films were prepared with different percentages of linear low density PE (LLDPE), oxidized potato starch and prooxidant. For the determination of biodegradability of the films, lignocellulose-degrading Streptomyces viridosporus T7A (ATCC 39115) was used. Films were chemically disinfected and incubated with S. viridosporus by shaking at 100 rpm at 37$^{\circ}C$ for eight weeks. Hydroxyl indices of the films by Fourier-Transform Infrared Spectroscopy, mechanical Properties of the films by Instron and film morphology by scanning electron microscope (SEM) were measured. The hydroxyl index of the film containing the oxidized potato starch incubated with S. viridosporus T7A was higher than that of the corresponding control. All the films containing 5% and 10% oxidized starch showed a decrease of tensile strength on the films after incubation when the corresponding uninoculated film was compared. In the oxidized starch/PE film incubated with S. viridosporus T7A, partial destruction of starch and PE was examined by SEM.

  • PDF

A Study on the Standardization of Activated Sludge Use to Biodegraded Linear Alkylbenzene Sulfonate (Linear Alkylbenzene Sulfonate의 생분해에 이용되는 활성오니의 표준화에 관한 연구)

  • Sun, Yle-Shik;Jung, Il-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • This study is on the biodegradability of the activated sludge, which used to biodegrade Linear Alkylbenzene Sulfonate(LAS), synthetic detergents and sufactants. The activated sludge in waste water treatment plant is used to the test of biodegradation of anionic surfactants and nonionic surfactants, but it have the periodic change of the biological propety to the lapse of the time. For the puropse of controlling and adjusting of the activated sludge in biodegradation test, we collected microorganisms from the sewage plant and the soil, and then, made the activated sludge in semicontinuous aeration chamber. From determined biodegradation data, and the degree of biodegradability to the LAS, we confirmd the standardized synthetic activated sludge which have more stable biodegradability than the sewage activated sludge. In continuous biodegradation test, LAS(dodecene-1) was biodegraded more than 99%, In 7days by the standardized activated sludge.

The Extended Site Assessment Procedure Based on Knowledge of Biodegradability to Evaluate the Applicability of Intrinsic Remediation (자연내재복원기술(Intrinsic Remediation)적용을 위한 오염지역 평가과정 개발)

  • ;Robert M. Cowan
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.3-21
    • /
    • 1997
  • The remediation of contamiated sites using currently available remediation technologies requires long term treatment and huge costs, and it is uncertain to achieve the remediation goal to drop contamination level to either back-ground or health-based standards by using such technologies. Intrinsic remediation technology is the remediation technology that relies on the mechanisms of natural attenuation for the containment and elimination of contaminants in subsurface environments. Initial costs for the intrinsic remediation may be higher than conventional treatment technologies because the most comprehensive site assessment for intrinsic remediation is required. Total remediation cost, however may be the lowest among the presently employed technologies. The applicability of intrinsic remediation in the contaminated sites should be theroughly investigated to achieve the remedial goal of the technology. This paper provides the frame of the extended site assessment procedure based on knowledge of biodegradability to evaluate the applicability of intrinsic remediation. This site assessment procedure is composed of 5 steps such as preliminary site screening, assessment of the current knowledge of biodegradability, selecting the appropriate approach, analyzing the contaminant fate and transport and planning the monitoring schedule. In the step 1, followings are to be decided 1) whether to go on the the detailed assessment or not based on the rules of thumb concerning the biodegradability of organic compounds, 2) which protocol document is selected to follow for detailed site assessment according to the site characteristics, contaminants and the relative distance between the contamination and potential receptors. In the step 2, the database for biodegradability are searched and evaluated. In the step 3, the appropriate biodegradability pathways for the contaminated site is selected. In the step 4, the fate and transport of the contaminants at the site are analyzed through modeling. In the step 5, the monitoring schedule is planned according to the result of the modeling. Through this procedure, users may able to have the rational and systematic informations for the application of intrinsic remediation. Also the collected data and informations can be used as the basic to re-select the other remediation technology if it reaches a conclusion not to applicate intrinsic remediation technology at the site from the site assessment procedure.

  • PDF

Treatment of Refractory Dye Wastewater Using AOPs (고도산화공정(AOPs)을 이용한 난분해성 염색폐수 처리)

  • Kim, Jong-Oh;Lee, Kwon-Ki;Jung, Jong-Tae;Kim, Young-Noh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.21-29
    • /
    • 2006
  • The treatment performance of ozonation and three types of advanced oxidation processes (AOPs) such as $O_3/H_2O_2$, $O_3/UV$, $O_3/H_2O_2/UV$ was experimentally investigated for the treatment of refractory synthetic dye wastewater. The removal efficiency of $COD_{cr}$, color and biodegradability ($BOD_5/COD_{cr}$) were relatively evaluated in each treatment unit with simulated dye wastewater. Optimal operational conditions of pH, temperature, dosage and circulation flow rate were also investigated. All suggested processes revealed an effectiveness for the removal of color within a short operational time, moreover, $O_3/H_2O_2/UV$ process showed the highest $COD_{cr}$ removal and biodegradability enhancement among proposed oxidation process.

  • PDF

The Study on the Biodegradability and Phosphate, Heavy Metal Contents of Shampoos and Powder Detergents for Clothing (샴푸와 의류용 분말세제의 생분해도와 인산염 및 중금속 함량에 대한 연구)

  • Ko, Young-Shin;Kim, Se-Kyong;Lim, Jong-Wan;Rhu, Chan-Joo;Choi, Sung-Yong
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1998
  • The biodegradabilities of surfactants were measured for shampoos and powder detergents for clothing(six kinds of each) in domestic market at present. Also the phosphates that cause of eutrophication and heavy metals to have a direct effect on human body were measured. Analysis results show that though they all come up to KS(Korean Industrial Standards), samples containing plenty of sodium ${\alpha}$-olefin sulfonate(AOS), linear alkyl benzene sulfonate(LAS) and synthetic sodium lauryl etoxylate sulfonate (SLES) have the lower biodegradability than the others. It was found that these samples were petroleum surfactants, and the lower biodegradability than surfactants extracted naturally. The contents of phosphates and heavy metals in the samples were under the regulation limits for the cosmetic standards.

  • PDF

Study on the Characteristics of Dissolved Organic Matters from Diverse Sources by XAD Resin Fractiontion and Microbial Incubation Experiments (XAD 수지분획과 생분해 실험에 의한 기원별 용존유기물질 특성 연구)

  • Oh, Seijin;Choi, ChanKyu;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.976-985
    • /
    • 2010
  • In this study, characteristics of dissolved organic matter (DOM) from Lake Paldang and seven other DOM sources (lake plankton, plants, soil, composite, treated sewage) were studied using XAD resin fractionation and 28-day microbial incubation experiment. Distribution patterns of DOM-fractions, which include hydrophilic acids (HiA), hydrophilic bases (HiB), hydrophilic neutrals (HiN), hydrophobic acids (HoA), hydrophobic neutrals (HoN) and the extent of DOM biodegradation (i.e., biodegradability) were different depending on the origins of the DOM samples. The DOM distribution pattern and the biodegradability were found to be effective for distinguishing the different DOM sources. The biodegradability (%) had negative correlations with the content (%) of hydrophobic fractions (Ho) and specific UV absorbance of DOM, which indicate that the Ho fractions contain more aromatic carbon structures and relatively stable during biodegradation, irrespective of the sources. To gain additional insight into the microbial transformation of the DOM, we also investigated the changes in the fraction's distribution for plankton, leaf litter and composite samples after the incubation. The results showed that biodegradation of hydrophilic fraction (Hi) causes an increase in the proportion of Ho (HoA, HoN), while biodegradation of HoA increases the HoN production.

Mechanical Properties and Biodegradability of PCL/TPS Blends (PCL/TPS 블렌드의 물성 및 생분해도)

  • 신창호;김영진;김봉식;신부영
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • Polycaprolactone (PCL) and thermoplastic starch (TPS) blends were prepared. Mechanical properties, thermal property, water absorption, biodegradability by composting and surface morphology of PCL/TPS blends were investigated. The compositions of PCL/TPS blends were 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, and 10/90. Strength and elongation at break decreased as the content of TPS increased, while modulus increased. DSC thermogram of TPS showed two glass transition temperatures (T$_{g}$ ) at 23$^{\circ}C$ and 126$^{\circ}C$. And TPS proved to be an amorphous polymer because there was no endothermic peak due to the melting of starch crystal. The unchanged melting temperatures and T$_{g}$ 's of PCL/TPS blends revealed that PCL and TPS were not miscible. All of the blends were found to be mechanically compatible but phase separated in each other. After 45 days composting, the biodegradability of PCL was 44% and that of PCL/TPS blends increased as the contents of TPS increased.

  • PDF