• Title/Summary/Keyword: biocontrol efficacy

Search Result 102, Processing Time 0.031 seconds

Amendment with Peony Root Bark Improves the Biocontrol Efficacy of Trichoderma harzianum against Rhizoctonia solani

  • Lee, Tae-Ok;Khan, Zakaullah;Kim, Sang-Gyu;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1537-1543
    • /
    • 2008
  • We tested Trichoderma harzianum as a biocontrol agent for Rhizoctonia solani AG2-1, using six natural antifungal materials to improve its efficacy. Among the six materials tested, peony (Paeonia suffruticosa) root bark (PRB) showed the strongest antifungal activity against R. solani AG2-1, and was not antagonistic to T. harzianum. Scanning electron microscopy showed that treatment with PRB extract resulted in shortened and deformed R. so/ani AG2-1 hyphal cells. The control of radish damping-off caused by R. so/ani AG2-1 was greatly increased by combined treatments of T. harzianum and PRB, as compared with either of the two treatments alone, with the control effect increased from 42.3-51.5% to 71.4-87.6%. The antifungal compound in PRB, which was isolated in chloroform and identified as paeonol by mass spectrometry, $^1H$ NMR, and $^{13}C$ NMR analyses, inhibited the growth of R. so/ani AG2-1 but not that of T. harzianum. Thus, PRB powder or extract may be used as a safe additive to T. harzianum to improve the control of the soil borne diseases caused by R. so/ani AG2-1.

Biocontrol Activity of Acremonium strictum BCP Against Botrytis Diseases

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Nam, Myeong-Hyeon;Lee, Seon-Woo;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Biological control activity of Acremonium strictum BCP, a mycoparasite on Botrytis cinerea, was examined against six plant diseases such as rice blast, rice sheath blight, cucumber gray mold, tomato late blight, wheat leaf rust, and barley powdery mildew in growth chambers. The spore suspension of strain BCP showed strong control activities against five plant diseases except against wheat leaf rust. On the other hand, the culture filtrate of A. strictum BCP was effective in controlling only cucumber gray mold and barley powdery mildew. Further in vivo biocontrol activities of A. strictum BCP against tomato gray mold were investigated under greenhouse conditions. Control efficacy of the fungus on tomato gray mold increased in a concentration-dependent manner. Treatment of more than $1{\times}10^6$ spores/ml significantly controlled the disease both in tomato seedlings and in adult plants. The high disease control activity was obtained from protective application of the strain BCP, whereas the curative application did not control the disease. Foliar infections of B. cinerea were controlled with $1{\times}10^8$ spores/ml of A. strictum BCP applied up to 7 days before inoculation. In a commercial greenhouse, application of A. strictum BCP exhibited the similar control efficacy with fungicide procymidone (recommended rate, $500{\mu}g/ml$) against strawberry gray mold. These results indicate that A. strictum BCP could be developed as a biofungicide for Botrytis diseases under greenhouse conditions.

Field Sanitation and Foliar Application of Streptomyces padanus PMS-702 for the Control of Rice Sheath Blight

  • Yang, Chia-Jung;Huang, Tzu-Pi;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.57-71
    • /
    • 2021
  • Rice sheath blight (ShB), caused by Rhizoctonia solani Kühn AG1-IA, is one of the destructive rice diseases worldwide. The aims of this study were to develop biocontrol strategies focusing on field sanitation and foliar application with a biocontrol agent for ShB management. Streptomyces padanus PMS-702 showed a great antagonistic activity against R. solani. Fungichromin produced by S. padanus PMS-702, at 3.07 mg/l inhibited 50% mycelial growth, caused leakage of cytoplasm, and inhibited the formation of infection structures of R. solani. Fungichromin could reach to 802 mg/l when S. padanus PMS-702 was cultured in MACC broth for 6 days. Addition of 0.5% S. padanus PMS-702 broth into soil decreased the survival rate of the pathogen compared to the control. Soil amended with 0.5% S. padanus broth and 0.5% tea seed pomace resulted in the death of R. solani mycelia in the infested rice straws, and the germination of sclerotia was inhibited 21 days after treatment. Greenhouse trials revealed that S. padanus cultured in soybean meal-glucose (SMGC-2) medium after mixing with different surfactants could enhance its efficacy for inhibiting the pathogen. Of six surfactants tested, the addition of 2% tea saponin was the most effective in suppressing the pathogen. S. padanus broth after being fermented in SMGC-2, mixed with 2% tea saponin, diluted 100 fold, and sprayed onto rice plants significantly reduced ShB disease severity. Thus, S. padanus PMS-702 is an effective biocontrol agent. The efficacy of S. padanus PMS-702 for disease control could be improved through formulation.

Development of the stable liquid formulation of Burkholderia cepacia YC5025, a biocontrol agent for cucumber anthracnose

  • Chung, Eu-Jeen;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.97.2-98
    • /
    • 2003
  • A new and effective formulation using antagonistic bacteria, Burkholderia cepacia YC5025 in vegetable oil was developed for the biocontrol of anthracnose. The bacterial population in the formulation was maintained to 5x10/sup7/ cfu/ml upto 60 days at room temperature. Control efficacy of the formulation for anthracnose was over 80% by spraying of diluted suspension(x1,000) in growth chamber tests. On the contrary, the bacterial suspension in distilled water or bacterial culture broth containing same number of spores as the formulation had low control efficacy around 40% even 2-weeks storage after preparation. The shelf-life of the formulation was longer than that of bacterial preparation using clay minerals such as talc or bentonite. The mechanisms of newly developed bacterial formulation are possibly the formation of water film on the surface of cucumber leaves and inactivation of the bacteria in the vegetable oils during storage. Further field tests and improvements with new liquid bacteiral formulation need to be done for practical application.

  • PDF

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries

  • Hang, Nguyen Thi Thu;Oh, Soon-Ok;Kim, Gyoung-Hee;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • Bacillus subtilis S1-0210 was selected as a biological agent against Botrytis cinerea in strawberry. The isolate inhibited mycelial growth of B. cinerea in vitro tests. A wettable powder formulation of B. subtilis S1-0210 significantly reduced infection rates with lower than 5%, compared with higher than 70% of infection rates in untreated control. The formulation showed 85 to 89% control efficacies of gray mold incidences on fruits of strawberry in pots. Pre-treatment of the agent was more effective in controlling gray mold on fruits and leaves than post-treatment at the early stage of disease development. The formulation also showed 70% control efficacy of gray mold incidence on fruits of strawberry in a field trial. The results indicate that B. subtilis S1-0210 in the wettable powder formulation may be a potential biocontrol agent to control gray mold on strawberry.

Bacterial Mixture from Greenhouse Soil as a Biocontrol Agent Against Root-Knot Nematode, Meloidogyne incognita, on Oriental Melon

  • Seo, Byoung-Joo;Kumar, V.J. Rejish;Ahmad, Rather Irfan;Kim, Byung-Chun;Park, Wan;Park, So-Deuk;Kim, Se-Eun;Kim, Sang-Dal;Lim, Jeong-Heui;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.114-117
    • /
    • 2012
  • The biological control efficacy of a greenhouse soil bacterial mixture of Lactobacillus farraginis, Bacillus cereus, and Bacillus thuringiensis strains with antinematode activity was evaluated against the root-knot nematode Meloidogyne incognita. Two control groups planted in soil drenched with sterile distilled water or treated with the broad-spectrum carbamate pesticide carbofuran were used for comparison. The results suggest that the bacterial mixture is effective as a biocontrol agent against the root-knot nematode.

Combined Application of Pseudomonas fluorescens and Trichoderma viride has an Improved Biocontrol Activity Against Stem Rot in Groundnut

  • Manjula, K.;Kishore, G.Krishna;Girish, A.G.;Singh, S.D.
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2004
  • In an attempt to develop effective biocontrol system for management of stem rot disease in groundnut, 57 bacterial isolates and 13 isolates of Trichoderma spp. were evaluated for their antagonistic activity against Sclerotium rolfsii. The antagonists were selected based on their ability to inhibit the external growth of S. rolfsii from infected groundnut seeds. Four isolates of Pseudomonas fluorescens, GB 4, GB 8, GB 10 and GB 27, and T. viride pq 1 were identified as potent antagonists of S. rolfsii. T. viride pq 1 produced extracellular chitinase and parasitized the mycelium of S. rolfsii. Under controlled environment conditions, P. fluorescens GB 10, GB 27, T. viride pq 1 and the systemic fungicide Thiram(equation omitted) reduced the mortality of S. rolfsii inoculated to groundnut seedlings by 58.0%, 55.9%, 70.0% and 25.9%, respectively compared to control. In vitro growth of P. fluorescens GB 10 and GB 27 was compatible with T. viride pq 1 and Thiram(equation omitted). Integrated use of these two bacterial isolates with T. viride pq 1 or Thiram(equation omitted) improved their biocontrol efficacy. Combined application of either GB 10 or GB 27 with T. viride pq 1 was significantly effective than that with Thiram(equation omitted) in protecting groundnut seedlings from stem rot infection.