• Title/Summary/Keyword: biocompatible materials

Search Result 202, Processing Time 0.03 seconds

Biocompatible Individual Dispersion of Single-walled Carbon Nanotubes

  • Najeeb, C.K.;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.529-529
    • /
    • 2012
  • Dispersion of carbon nanotubes in biocompatible media are of particular interest for diverse biomedical and nanomedicine applications. Various biomolecules and biopolymers such as DNA, proteins, poly L-lysine, starch, gelatin, steroid biosurfactants, and chitosan have shown capability for the effective dispersion of carbon nanotubes in water. Chitosan has demonstrated capacity for effective dispersion of single-walled carbon nanotubes (SWCNTs) in acidic medium and it also showed tendency to preferentially disperse smaller diameter nanotubes. Chemical functionalizations of chitosan enable its solubility in neutral pH water by reducing the intra and inter molecular hydrogen bonding. Herein, we present a neutral pH water soluble chitosan derivative, chitosan-hydroxyphenyl acetamide (CHPA), obtained by functionalizing the amino groups of chitosan with 4-hydroxyphenyl acetic acid, as an efficient biocompatible dispersant for debundling and solubilization of SWNTs in neutral aqueous solutions. Various process conditions for individual dispersion of SWCNTs are analyzed based on optical absorption and Raman spectroscopy.

  • PDF

Novel Surface Modifications for Medical Applications

  • Park, Gi-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.78-78
    • /
    • 2016
  • For the past three decades, extensive research has been performed in the surface design of new polymers for a variety of medical applications. Great progress in therapeutics and diagnostics can be attributed to these scientific advances in biomedical polymers. A variety of bioinert materials or bioactive materials using drugs, cells, and growth factors are widely utilized for the implants, devices and tissue regeneration. These materials provide an improved biocompatible materials to host, to significantly decrease or increase the host/tissue/blood response to the foreign materials. In the future, biomaterials will play a different role in modern therapeutics. New materials will be tailored to interact more on a protein and cellular level to achieve high degree of biocompatibility, biospecificity and bioacitivity. In this presentation, various biocompatible materials based on surface/bulk engineering will be demonstrated, which can be utilized as therapeutics implants and therapeutic vehicles for biologically active molecules such as cell, protein /peptide and gene.

  • PDF

Successful Carapace Puncture Wound Repair with Polymethyl Methacrylate (PMMA) in an Amur Softshell Turtle (Pelodiscus maackii)

  • Ha, Minjong;Lee, Do Na;Ahmed, Sohail;Han, Janghee;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.39 no.4
    • /
    • pp.185-191
    • /
    • 2022
  • An Amur softshell turtle with multiple shell injuries was admitted to the Seoul Wildlife Center on 19 May 2021. The most severe lesion was a puncture wound requiring urgent closure. In addition to routine supportive therapy, the damaged shell was patched with biocompatible polymethyl methacrylate (PMMA) materials (bone cement and dental acrylic) and fiberglass. Despite a few methods to repair the carapace or plastron of hard-shelled turtles, shell repair in the Amur softshell turtle has rarely been reported. This paper reports the repair process of a puncture wound in the carapace of a softshell turtle using polymethyl methacrylate (PMMA). PMMA is a biocompatible acrylic polymer that forms a tight structure that holds the implant against tissue defects, such as skin, bones, and dentures. Fiberglass, a preferred fiber in various medical fields, was used with PMMA to provide extra strength and waterproof capability. After the procedure, there were no signs of edema, inflammation, bleeding, skin discoloration, or any other complications. Accordingly, this can be a method of choice in softshell turtles using biocompatible materials to cover the lesion in the carapace and provide appropriate wound management, supportive therapy, and a suitable course of antibiotics considering all other circumstances.

Biocompatible Hydroxyapatite Ceramics Prepared from Natural Bones and Synthetic Materials (천연 및 인공원료로부터 제조한 생체친화형 하이드록시아파타이트 세라믹스)

  • Lee, Jong-Kook;Ko, Young-Hwa;Lee, Nan-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.285-291
    • /
    • 2012
  • Hydroxyapatite (HA) is well known as a biocompatible and bioactive material. HA has been practically applied as bone graft materials in a range of medical and dental fields. In this study, two types of dense hydroxyapatite ceramics were prepared from natural bones and synthetic materials. The biocompatibility of HA ceramics for supporting osteoblast cell growth and cytotoxicity using an in vitro MG-63 cell line model were respectively evaluated. Artificial hydroxyapatite shows relative density of 93% with 1-2 ${\mu}m$ after sintering, but a hydroxyapatite compact derived from bovine bone has low sintered density of 85% with a small content of MgO. Irrespective of the starting raw materials, both types of sintered hydroxyapatite displayed similar biocompatibility in the tests. FE-SEM observations showed that most MG-63 cells had a stellar shape and formed an intercellular matrix containing fibers on sintered HA. The cells were well attached and grown over the HA surface, indicating that there was no toxicity.

Evaluation of Plasma Spray Hydroxy Apatite coatings on Metallic Materials

  • Take, S.;Mitsui, K.;Kasahara, M.;Sawai, R.;Izawa, S.;Nakayama, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.286-290
    • /
    • 2007
  • Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resisitance of SUS316L based HAp/Ti conbined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer.

Magnetic fields-assisted movement of iron oxide-nanoparticles-incorporated large scale alginate capsules

  • Lee, Dohyeon;Park, Sunho;Kim, Daun;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.27-27
    • /
    • 2017
  • Biocompatible capsules have recently been highlighted as novel delivery platforms of any "materials" (e.g., drug, food, agriculture pesticide) to address current problems of living systems such as humans, animals, and plats in academia and industry for agriculture, biological, biomedical, environmental, food applications. For example, biocompatible alginate capsules were proposed as a delivery platform of biocontrol agents (e.g., bacterial antagonists) for an alternative to antibiotics, which will be a potential strategy in future agriculture. Here, we proposed a new platform based on biocompatible alginate capsules that can control the movements as an active target delivery strategy for various applications including agriculture and biological engineering. We designed and fabricated large scale biocompatible capsules using alginates and custom-made nozzles as well as gelling solutions. To develop the active target delivery platforms, we incorporated the iron oxide nanoparticles in the large scale alginate capsules. It was found that the sizes of large scale alginate capsules could be controlled via various working conditions such as concentrations of alginate solutions and iron oxide nanoparticles. As a proof of concept work, we showed that the iron oxide particles-incorporated large scale alginate capsules could be moved actively by the magnetic fields, which would be a strategy as active target delivery platforms for agriculture and biological engineering (e.g., controlled delivery of agriculture pesticides and biocontrol agents).

  • PDF

Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys (Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화)

  • Hwang, HyoWoon;Lee, YongJae;Park, JiHwan;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of beta-stabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly beta-stabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.

Mineral Trioxide Aggregate (MTA): Review of its biologic properties (Mineral trioxide Aggregate(MAT)의 생물학적 기전에 대한 고찰)

  • Kim, Eui-Seong;Shin, Su-Jung
    • The Journal of the Korean dental association
    • /
    • v.48 no.11
    • /
    • pp.798-802
    • /
    • 2010
  • Introduction: MTA has been studied for more than 15 years since it was introduced and developed at Loma Linda University. The purpose of this review was to present the current published papers regarding MTA's biologic properties and to provide a deep insight into the material's mechanisms of actions. Results: MTA has appeared to be biocompatible in many previous researches. In addition to that, it had a potential to increase cell reactions such as proliferation and differentiation, Recently, MTA like new endodontic materials has been introduced and marketed. Conclusions: On the basis of current evidences, MT A seems to be biocompatible. Meticulous studies need to be performed to adopt new endodontic materials into clinical applications,