• 제목/요약/키워드: bioceramic materials

검색결과 46건 처리시간 0.024초

생물여과층에 의한 납의 이동억제효과에 관한 연구 (A Study on the Effects of Retardation with Pb in the Biofilter)

  • 이문현;이재영;최상일
    • 한국토양환경학회지
    • /
    • 제5권2호
    • /
    • pp.99-105
    • /
    • 2000
  • 본 연구는 Pb으로 오염된 토양을 Biofilter에 의한 적용가능성을 판단하고 충전물질, bed수 그리고 미생물 접종에 따른 Pb의 이동억제효과의 변화를 Pilot plants의 실험을 하였으며 토양의 분해정도를 CODcr/TOC ratio로써 안정화 지표에 대한 변화를 검토하였다. 생물여과는 오염된 물질을 생물여과상를 통과시켜 충전물질표면에 부착되어있는 생물막의 각종미생물들에 의한 경계면을 통하여 물질의 상호교환 및 전환이 생기며 생물막내에 흡수된 물질을 생물학적으로 처리하는 방법의 일종이다. 본 연구는 오염된 토양에 lead nitrate를 첨가시켜 납을 1,000㎎/kg dry soil로 인공적으로 조제한후 충전물질로는 퇴비, 바이오세라믹 그리고 퇴비와 바이오세라믹을 중량비로 7:3으로 하였고, 1단, 2단, 3단으로 하고 이에따라 생물흡착제로 'Aspergillus niger'를 이용하며 납의 이동억제효과의 변화를 검토하였다.

  • PDF

압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구 (Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling)

  • 사민우;김종영
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1273-1281
    • /
    • 2014
  • 조직공학은 손상된 골 조직 및 장기를 복원, 재생, 그리고 복구할 수 있는 잠재력을 가진 새로운 학문 분야이다. 인산칼슘계 세라믹스인 삼인산칼슘과 수산회인회석은 골 조직 재생을 위해 골전도성과 생체적합성의 특성을 가진 우수한 재료로 알려져 있다. 본 연구에서, 혼합 용액 구조물은 적층 및 히터장치를 기반으로 한 압출 적층 조형 시스템을 이용하여 제작되었다. 바이오 세라믹 인공지지체는 $1,300^{\circ}C$의 고온에서 소결되었고, 또한 형태학적인 특성은 주사전자현미경을 통해 분석되었다. 게다가, TCP/HA 의 혼합비율에 따른 미세구조물과 수축률에 대한 효과는 연구되었다. 인공지지체의 기계적 특성은 1 mm/min 의 크로스헤드 속도로 압축 시험기를 통해 측정되었고, 인공지지체의 세포 증식평가를 위해 MG-63 세포를 이용하였다. 본 연구의 결과는 혼합된 TCP(75 wt%)/HA(25 wt%) 인공지지체가 골 조직 재생을 위해 적합한 인공지지체라는 것을 제안한다.

Effect of ultrasonic cleaning on the bond strength of fiber posts in oval canals filled with a premixed bioceramic root canal sealer

  • Bengoa, Fernando Pena;Arze, Maria Consuelo Magasich;Noguera, Cristobal Macchiavello;Moreira, Luiz Felipe Nunes;Kato, Augusto Shoji;Da Silveira Bueno, Carlos Eduardo
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.19.1-19.8
    • /
    • 2020
  • Objective: This study aimed to evaluate the effect of ultrasonic cleaning of the intracanal post space on the bond strength of fiber posts in oval canals filled with a premixed bioceramic (Bio-C Sealer [BIOC]) root canal sealer. Materials and Methods: Fifty premolars were endodontically prepared and divided into 5 groups (n = 10), based on the type of root canal filling material used and the post space cleaning protocol. A1: gutta-percha + AH Plus (AHP) and post space preparation with ultrasonic cleaning, A2: gutta-percha + BIOC and post space preparation with ultrasonic cleaning, B1: gutta-percha + AHP and post space preparation, B2: gutta-percha + BIOC and post space preparation, C: control group. Fiber posts were cemented with a self-adhesive luting material, and 1 mm thick slices were sectioned from the middle and cervical third to evaluate the remaining filling material microscopically. The samples were subjected to a push-out test to analyze the bond strength of the fiber post, and the results were analyzed with the Shapiro-Wilk, Bonferroni, Kruskal-Wallis, and Mann-Whitney tests (p < 0.05). Failure modes were evaluated using optical microscopy. Results: The results showed that the fiber posts cemented in canals sealed with BIOC had lower bond strength than those sealed with AHP. The ultrasonic cleaning of the post space improved the bond strength of fiber posts in canals sealed with AHP, but not with BIOC. Conclusions: BIOC decreased the bond strength of fiber posts in oval canals, regardless of ultrasonic cleaning.

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • 제48권1호
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.

고분자 열분해와 자가발포를 이용한 생체활성 다공체의 제조 (Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing)

  • 곽대현;김진호;이은주;김득중
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.412-417
    • /
    • 2011
  • Formation and characterization of hydroxyapatite-based porous ceramics derived from polymer pyroysis were investigated. Polymer based process is chosen for preparing porous hydroxyapatite-based ceramics having a high mechanical strength. The hydroxyapatite-based porous ceramic was prepared by a self-blowing process of a polymethylsiloxane with filler and pyrolyzed at above $1000^{\circ}C$. Biphasic material consisted of hydroxyapatite and CaO has been prepared by solid state reaction from calcium hydroxide($Ca(OH)_2$) and calcium hydrogen phosphate dihydrate($CaHPO_4{\cdot}2H_2O$) as a filler material. The influence of filler content on mechanical properties was evaluated. The change of crystalline phase, microstructure and mechanical properties were investigated and discussed.

Hydroxyapatite Bioceramics의 합성 및 물성에 관한 연구 (A Study on the Preparation and Properties of Hydroxyapatite Bioceramics)

  • 이석곤;고형열;이구종;최상흘
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.171-178
    • /
    • 1989
  • In order to develope hydroxyapatite ceramics which has mechanical strength as bio-implant materials and get the basic data for the study and application of biocompatibility, hydroxyapatite was synthesized at Ca/P=1.67~1.75, pH 7~11 by precipitation method. Using prepared powders, the sintered body, fluorine substituted body and the porous body was formed and their properties were investigated. The sample obtained in condition of Ca/P=1.67, pH 7 and sintering at 1,15$0^{\circ}C$ was decomposed to $\beta$-tricalcium phosphate, and co-existed with hydroxyapatite. Hydroxyapatite synthesized at pH 11 was not easily decomposed to $\beta$-tricalcium phosphate at sintering process. The substitution of a small amount of fluorine for hydroxyapatite prevented hydroxyapatite from being decompsed to $\beta$-tricalcium phosphate. Hydroxyapatite ceramics which substited of 10% fluorine was prepared at 1,15$0^{\circ}C$, and the valueof bending strength for this body were found to be 112MPa.

  • PDF

치성 낭종 적출술후 사용된 HAP의 효과에 대한 임상적 방사선학적 연구 (A CLINCO-RADIOGRAPHIC STUDY ON EFFECT OF HAP USED AFTER ODONTOGENIC CYST ENUCLEATION)

  • 임재석;김성문;류재준;김희종;이상은;조민
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제12권3호
    • /
    • pp.57-62
    • /
    • 1990
  • Many alloplastic materials have been used as the bony substitute in large bony defects caused by fracture, periodontitis, & cyst, etc. Nowadays Hydroxyapatite(HAP) is the most usable material as the bony substitute. The reasonable properties of HAP are nontoxic, biocompatible to host tissues & have osteoconductivity. Other bioceramic materials are recommended as the bony substitute with high success rate. We have studied the clinical use of HAP as the bony substitute in the defected area caused by cyst. The reasonalbe & successful results are obtained. The results were as followed. 1. Better prognosis was obtained in the case of HAP & bone mixed graft than HAP graft only. And the best prognosis was obtained in the case of iliac bone graft. 2. Better prognosis was obtained in Mx. than in Mn. 3. It seems that the soft tissue ingrowth into the HAP granule play an important role in the success of the HAP graft. 4. Though the flap covering the HAP granules was perforated, the relative good prognosis was obtained by re-suturing the perforeated site.

  • PDF

Hydroxyapatite-Based Biomaterials for Hard Tissue Applications

  • Kim Hae-Won;Kim Hyoun-Ee
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권5호
    • /
    • pp.319-330
    • /
    • 2005
  • Over the past few decades, much effort has been made to improve the mechanical and biological performance of HA, in order to extend its range of applications. As a major inorganic component of human hard tissues, hydroxyapatite bioceramic is regarded as being one of the most biocompatible materials. Numerous in vitro and in vivo studies have confirmed its excellent bioactivity, osteoconductivity and bone forming ability. However, because of its poor mechanical properties, its use in hard tissue applications has been restricted to those areas in which it can be used in the form of small sized powders/granules or in the non-load bearing sites. A number of researchers have focused on improving the mechanical and biological performance of HA, as well as on the formulation of hybrid and composite systems in order to extend its range of applications. In this article, we reviewed our recent works on HA-based biomaterials; i) the strengthening of HA with ceramic oxides, ii) HA-based bioactive coatings on metallic implants, iii) HA-based porous scaffolds and iv) HA-polymer hybrids/composites.

Effects of Process Parameters on the Coating Properties of APS TiO2 ioceramic Coatings

  • Kim, Hak-Kwak;Jang, Ju-Woong;Kim, Byoung-Soo;Moon, Ji-Woong;Lee, Deuk-Yong;Lee, Chang-Hee
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.123-127
    • /
    • 2003
  • The effects of process parameters on coating formation and coating properties were investigated using a fused and crushed Ti $O_2$powder by the Taguchi method and L$_{9}$(3$^4$) orthogonal array. The Taguchi analysis was conducted through the results of the coating properties affected strongly by plasma spraying parameters and Ti $O_2$powder was sprayed on Ti-6Al-4V alloy substrate. The coating properties were characterized by thickness, microhardness, porosity and surface roughness using optical microscopy, image analyzer and surface roughness tester respectively. An observed optimum condition of plasma spraying process could be found for potential use as a bioceramic coating.

참치뼈로 부터 추출한 천연 Hydroxyapatite의 특성 (The Properties of Natural Hydroxyapatite Isolated from Tuna Bone)

  • 이창국;최진삼;전유진;변희국;김세권
    • 한국수산과학회지
    • /
    • 제30권4호
    • /
    • pp.652-659
    • /
    • 1997
  • 수산가공 공정에서 어육을 채취한 후 폐기되는 참치뼈와 같은 생물체를 회화시킨 후 이들의 고유물성과 아파타이트계 바이오세라믹스의 합성 출발물질에 이용되는 기존의 화학시약과 여러가지 상을 가지는 바이오세라믹의 합성에 사용되는 화학시약을 대체하기 위한 고찰에서 얻은 결론은 다음과 같다. 1. 회화 후 추출한 물질의 X-ray 분석결과, 결정상은 회화온도에 관계없이 $1350^{\circ}C$까지는 $Ca_{10}\;(PO_4)_6\;(OH)_2$ 조성을 가지는 hydroxyapatite상으로 나타나, 화학시약으로 합성한 아파타이트와는 상이한 열분해 반응기구가 나타났다. 2. 회화한 참치뼈의 입자 크기분포는 온도의 증가에 따라 점진적으로 감소하는 거동을 보였고, 입자 크기분포는 $1050^{\circ}C$에서 최저치를 나타내 생물체의 회화온도는 $1050^{\circ}C$ 이하가 적정하였다. 3. 온도변화에 따른 입자의 변화양상을 SEM으로 추적한 결과, 온도에 따른 입자 형상의 변화는 나타나지 않았다. 그러나 회화온도가 높아 질 수록 입자간의 재응집과 소결의 진행과정에서 나타나는 입자간의 neck에 인해서 입자크기 분포 역시 증가하는 경향을 나타내었다. 4. 참치뼈로부터 추출된 아파타이트는 생체재료로서 이용가능한 것으로 나타났다. 또한 glass-ceramic 등과 같은 바이오 세라믹 조성식에서 생물체에서 추출한 아파타이트로 화학시약의 부분적인 치환 역시 가능하였다.

  • PDF