• Title/Summary/Keyword: biocatalysts

Search Result 62, Processing Time 0.027 seconds

Transaminases for Green Chemistry: Recent Progress and Future Prospects

  • Shreya Pandya;Akshaya Gupte
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.333-352
    • /
    • 2023
  • Transaminase represents the most important biocatalysts used for the synthesis of chiral amines due to their stereoselectivity. They allow asymmetric synthesis with high yields and enantioselectivity from their corresponding ketones. Due to their environmentally friendly access for the preparation of chiral amines, they have attracted growing attention in recent times. Thus, the production of chiral compounds by transaminase catalysed reactions is considered as an important application in synthetic organic chemistry. Therefore, transaminase is considered to be an important enzyme in the pharmaceutical and chemical industries. ω-Transaminase holds great potential because of its wide substrate specificity thus making it a suitable enzyme to be used at an industrial scale. This review highlights the reaction mechanism, classification, substrate specificity, and biochemical properties. The review also showcases the application of ω-transaminase in organic chemistry with a focus on the production of active pharmaceutical ingredients (APIs).

Yeast cell surface display of cellobiohydrolase I

  • Lee, Sun-Kyoung;Suh, Chang-Woo;Hwang, Sun-Duk;Kang, Whan-Koo;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.468-472
    • /
    • 2003
  • Recently, genetic engineering techniques have been used to display various heterologous peptides and proteins (enzyme, antibody, antigen, receptor and fluorescence protein, etc.) on the yeast cell surface. Living cells displaying various enzymes on their surface could be used repeatedly as 'whole cell biocatalysts' like immobilized enzymes. We constructed a yeast based whole cell biocatalyst displaying T. reesei cellobiohydrolase I (CBH I ) on the cell surface and endowed the yeast-cells with the ability to degrade cellulose. By using a cell surface engineering system based on ${\alpha}-agglutinin,$ CBH I was displayed on the cell surface as a fusion protein containing the N-terminal leader peptide encoding a Gly-Ser linker and the $Xpress^{TM}$ epitope. Localization of the fusion protein on the cell surface was confirmed by confocal microscopy. In this study, we report on the genetic immobilization of T. reesei CBH I on the S. cerevisiae and hydrolytic activity of cell surface displayed CBH I.

  • PDF

Construction and Characterization of Multiple Heavy Metal-Resistant Phenol-Degrading Pseudomonads Strains

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1001-1007
    • /
    • 2003
  • Metal ions contamination may inhibit microorganisms involved in the biodegradation of organic compounds and affect biodegradation rates. Therefore, it is likely that bioremediation of xenobiotics-contaminated soils and waste will require inoculation with efficient biodegrading microbial communities, with capabilities of being resistant to heavy metals as well. Two different transconjugants (Pseudomonas sp. KMl2TC and P. aeruginosa TC) were constructed by conjugation experiments. Results on MIC, induction and growth inhibition strongly indicated that arsenic-resistant plasmid, pKM20, could be mobilized, and the newly acquired phenotype of pKM20 was not only expressed but also well regulated, resulting in newly acquired resistances to $As^{5+},\;As^{3+},\;and\;Sb^{3+} in\;addition\;to\;Cd^{2+},\;Zn^{2+},\;and\;Hg^{2+}$. The phenol- degradation efficiencies of Pseudomonas sp. KMl2TC were maintained significantly even at high heavy metal concentrations at which these efficiencies of P. aeruginosa TC were completely impaired. The results in this study on the effects of heavy metals on phenol degradation, especially after conjugation, are the first ever reported. All the results described in this study encourage to establish a goal of making "designer biocatalysts" which could degrade certain xenobiotics in the area contaminated with multiple heavy metals.

UV Spectrometric Assay of Epoxide Hydrolase Activity of Microbial Cell Biocatalysts (자외선분광기를 이용한 미생물 세포 생촉매의 에폭사이드 가수분해효소 활성평가)

  • Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.456-459
    • /
    • 2005
  • UV spectrometric assay for measurement of epoxide hydrolase activity was tested for efficient screening of whole cell activity of epoxide hydrolase. Epoxide hydrolase activities were determined by measuring the amount of p-nitrostyrene diol (pNSD), which was the hydrolysis product of p-nitrostyrene oxide (pNSO). Enantioselective hydrolysis of racemic pNSO using epoxide hydrolase activity of Rhodosporidium toruloides was monitored by UV spectrometric assay, and the relevant $K_m$ and $V_m$ for R. toruloides were determined as $2.457nmol/min{\cdot}mg$ and 1.078 mM, respectively.

The Analysis and Application of a Recombinant Monooxygenase Library as a Biocatalyst for the Baeyer- Villiger Reaction

  • Park, Ji-Yeoun;Kim, Dong-Hyun;Kim, Su-Jin;Kim, Jin-Hee;Bae, Ki-Hwan;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1083-1089
    • /
    • 2007
  • Because of their selectivity and catalytic efficiency, BVMOs are highly valuable biocatalysts for the chemoenzymatic synthesis of a broad range of useful compounds. In this study, we investigated the microbial Baeyer-Villiger oxidation and sulfoxidation of thioanisole and bicyclo[3.2.0]hept-2-en-6-one using whole Escherichia coli cells that recombined with each of the Baeyer-Villiger monooxygenases originated from Pseudomonas aeruginosa PAOl and two from Streptomyces coelicolor A3(2). The three BVMOs were identified in the microbial genome database by a recently described protein sequence motif; e.g., BVMO motif(FXGXXXHXXXW). The reaction products were identified as (R)-/(S)-sulfoxide and 2-oxabicyclo/3-oxabicyclo[3.3.0]oct-6-en-2-one by GC-MS analysis. Consequently, this study demonstrated that the three enzymes can indeed catalyze the Baeyer-Villiger reaction as a biocatalyst, and effective annotation tools can be efficiently exploited as a source of novel BVMOs.

Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde (글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상)

  • AHN, YEONJOO;CHUNG, YONGJIN;LEE, KYUBIN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

Immobilization of Rhizopus chinesis using Polyurethane Foams (Polyurethane Foam을 이용한 리파아제 생산 균주 Rhizopus chinesis의 고정화)

  • 주지선;류희욱장용근
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.172-178
    • /
    • 1992
  • A simple and effective method has been developed for the immobilization of lipase producing Rhizopus chinensis on polyurethane foam. In this method, the fungal cells with 1, 3 specific lipase in there inside are immobilized within the foam matrix. Four types of commercially available polyurethane foam were tested. The ultimate purpose of the process is to produce low-cost biocatalysts for lipase-catalyzed reactions, which are being increasingly used for industrial applications. Effects of several parameters were studied on the cell loading and the hydrolytic activity of intracellular lipase after acetone drying. These parameters were the type, size, and amount of polyurethane foam. In all the cases, the intracellular lipase activity obtained with the foam was approximately twice greater than that obtained in the absence of the foam.

  • PDF

Heterologous Expression of Novel Cytochrome P450 Hydroxylase Genes from Sebekia benihana

  • Park Nam-Sil;Park Hyun-Joo;Han Kyu-Boem;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.295-298
    • /
    • 2006
  • Actinomycetes are ubiquitous Gram-positive soil bacteria and a group of the most important industrial microorganisms for the biosynthesis of many valuable secondary metabolites as well as the source of various bioconversion enzymes. Cytochrome P450 hydroxylase (CYP), a hemebinding protein, is known to be involved in the modification of various natural compounds, including polyketides, fatty acids, steroids, and some aromatic compounds. Previously, six different novel CYP genes were isolated from a rare actinomycetes called Sebekia benihana, and they were completely sequenced, revealing significant amino acid similarities to previously known CYP genes involved in Streptomyces secondary metabolism. In the present study, these six CYP genes were functionally expressed in Streptomyces lividans, using an $ermE^{*}$ promoter-containing Streptomyces expression vector. Among six CYP genes, two S. benihana CYP genes (CYP503 and CYP504) showed strong hydroxylation activities toward 7-ethoxycoumarin. Furthermore, the recombinant S. lividans containing both the S. benihana CYP506-ferredoxin genes as well as the S. coelicolor feredoxin reductase gene also demonstrated cyclosporin A hydroxylation activity, suggesting potential application of actinomycetes CYPs for the biocatalysts of natural product bioconversion.

Microbial Fuel Cells for Bioenergy Generation and Wastewater Treatment (바이오에너지 생산 및 폐수처리를 위한 미생물연료전지)

  • Nah, Jaw-Woon;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.567-578
    • /
    • 2013
  • A microbial fuel cell (MFC) is a bio-electrochemical device that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. Power density and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configurations of the system and operating conditions. The achievable power output from MFC increased remarkably by modifying their designs such as the optimization of MFC configurations, the physical and chemical operating conditions, and the choice of biocatalysts. This article presents a critical review on the recent advances made in MFC research with the emphasis on MFC configurations, optimization of important operating parameters, performances and future applications of MFC.

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.