• Title/Summary/Keyword: biocatalysts

Search Result 62, Processing Time 0.026 seconds

Epoxide Hydrolase-catalyzed Hydrolytic Kinetic Resolution for the Production of Chiral Epoxides (에폭사이드 가수분해효소에 의한 동력학적 가수분해반응을 이용한 광학활성 에폭사이드 생산)

  • 이은열
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.321-325
    • /
    • 2002
  • Chiral epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are newly discovered enzymes and versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-Prepare catalysts. In this Paper, recent progresses in biochemistry and molecular biology of EH and developments of novel reaction systems are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides.

Molecular Engineering of Epoxide Hydrolases for Production of Enantiopure Epoxides (분자공학 기반의 광학활성 에폭사이드 제조용 epoxide hydrolase 생촉매 개발)

  • Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.168-174
    • /
    • 2006
  • Enantiopure epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of enantiopure epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-prepare catalysts. In this paper, recent progresses In molecular engineering of EHs are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of enantiopure epoxides.

Synthesis of Acetins from Glycerol using Lipase from Wheat Extract

  • Pradima, J;Rajeswari, M Kulkarni;Archna, Narula;Sravanthi, V;Rakshith, R;Nawal, Rabia Nizar
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.501-506
    • /
    • 2019
  • New technology-driven biocatalysts are revolutionizing the biochemical industries. With maximum utilization of renewable feedstock, biocatalysts have been the basis for a major breakthrough. Lipases are the most widely established catalysts used for hydrolysis, esterification and transesterification reactions. In this research, a biochemical process that combines extraction of lipase enzyme from germinated wheat seeds and its application to valorize glycerol to acetins by esterification is presented. Acetins are among highly rated, value-added products derived from glycerol. The favorable conditions for the enzymatic conversion of glycerol were observed as glycerol to acetic acid molar ratio (1:5), reaction temperature ($40^{\circ}C$) and the amount of enzyme (20% v/v). 65.93% of glycerol conversion was achieved for duration of 15 h with the use of tert-butanol solvent. This method proposes to explore the viability of a biological route to convert glycerol derived from biodiesel industry to acetins with further streamlining.

Biocatalysts in Reverse Micelles (역미셀에서 생촉매제)

  • 이강민
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1992
  • The use of watersoluble enzymes for chemical synthesis suffers from several limitations. The solubilization of biocatalyst (Enzymes and Cells) with reverse micelles or microemulsion could be a method for bioconveision of low water soluble substrates. In this review, We will discuss the properties and the potentials of reverse micelle for catalytic bioconversion and biotechnology.

  • PDF

Molecular Identification of Lipase LipA from Pseudomonas protegens Pf-5 and Characterization of Two Whole-Cell Biocatalysts Pf-5 and Top10lipA

  • Zha, Daiming;Xu, Li;Zhang, Houjin;Yan, Yunjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.619-628
    • /
    • 2014
  • To identify lipase LipA (PFL_0617) from Pseudomonas protegens Pf-5, a lipA deletion mutant (Pf0617) and a complementary strain (Pf0617lipA) were constructed, and their effects on the lipase production were examined. Pf0617 remarkably decreased its whole-cell lipase activity, whereas Pf0617lipA made its whole-cell lipase activity not only restore to wild-type level but also get a further increment. However, the deletion and overexpression of lipA did not affect the extracellular lipase activity. In addition, the unbroken whole cells of these strains were able to catalyze the hydrolysis of membrane-permeable p-nitrophenyl esters, but could not hydrolyze the membrane-impermeable olive oil. These results confirmed that LipA was an intracellular lipase and Pf-5 could also be used as a natural whole-cell biocatalyst. To evaluate the potential of Pf-5 as a whole-cell biocatalyst and separately characterize the whole-cell LipA, the properties of the whole-cell lipases from Pf-5 and Top10lipA were characterized. The results demonstrated that both Pf-5 and Top10lipA exhibited high tolerance to alkaline condition, high temperature, heavy metal ions, surfactants, and organic solvents. Taken together, lipA can realize functional expression in E. coli Top10, and Pf-5 and Top10lipA as whole-cell biocatalysts may have enormous potential in applications.

Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics (시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동)

  • Lee, Jinyoung;Cho, Jaehoon;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.115-120
    • /
    • 2017
  • In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.

Extremophiles as a Source of Unique Enzymes for Biotechnological Applications

  • Antranikian G.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.39-45
    • /
    • 2001
  • Extremophiles are unique microorganisms that are adapted to survive in ecological niches such as high or low temperatures, extremes of pH, high salt concentrations and high pressure. These unusual microorganisms have unique biochemical features which can be exploited for use in the biotechnological industries. Due to the high biodiversity of extremophilic archaea and bacteria and their existence in various biotopes a variety of biocatalysts with different physicochemical properties have been discovered. The extreme molecular stability of their enzymes, membranes and the synthesis of unique organic compounds and polymers make extremophiles interesting candidates for basic and applied research. Some of the enzymes from extremophiles, especially hyperthermophilic marine microorganisms (growth above $85^{\circ}C$), have already been purified in our laboratory. These include the enzyme systems from Pyrococcus, Pyrodictium, Thermococcus and Thermotoga sp. that are involved in polysacharide modification and protein bioconversion. Only recently, the genome of the thermoalkaliphilic strain. Anaerobranca gottschalkii has been completely sequenced providing a unique resource of novel biocatalysts that are active at high temperature and pH. The gene encoding the branching enzyme from this organism was cloned and expressed in a mesophilic host and finally characterized. A novel glucoamylase was purified from an aerobic archaeon which shows optimal activity at $90^{\circ}C$ and pH 2.0. This thermoacidophilic archaeon Picrophilus oshimae grows optimally at pH 0.7 and $60^{\circ}C$. Furthermore, we were able to detect thermoactive proteases from two anaerobic isolates which are able to hydrolyze feather keratin completely at $80^{\circ}C$ forming amino acids and peptides. In addition, new marine psychrophilic isolates will be presented that are able to secrete enzymes such as lipases, proteases and amylases possessing high activity below the freezing point of water.

  • PDF

Optimization of Microbial Electrosynthesis Using Rhodobacter sphaeroides for CO2 Upcycling (CO2 고부가화를 위한 로도박터 스페로이데스를 활용한 미생물 전기합성 최적화 연구)

  • Hui Su Kim;Hwi Jong Jung;Danbee Kim;Samgmin Lee;Jiye Lee;Jin-Suk Lee;Myounghoon Moon;Chang Hyun Ko;Soo Youn Lee
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.20-26
    • /
    • 2023
  • Emitted CO2 is an attractive material for microbial electrochemical CO2 reduction. Microbial electrochemical CO2 reduction (i.e., microbial electrosynthesis, MES) using biocatalysts has advantages compared to conventional CO2 reduction using electrocatalysts. However, MES has several challenges, including electrode performance, biocatalysts, and reactor optimization. In this study, an MES system was investigated for optimizing reactor types, counter electrode materials, and CO2-converting microorganisms to achieve effective CO2 upcycling. In autotrophic cultivation (supplementation of CO2 and H2), CO2 consumption of Rhodobacter sphaeroides was observed to be four times higher than that with heterotrophic cultivation (supplementation of succinic acid). The bacterial growth in an MES reactor with a single-chambered shape was two times higher than that with a double chamber (H-type MES reactor). Moreover, a single-chambered MES reactor equipped with titanium mesh as the counter electrode (anode) showed markedly increased current density in the graphite felt as a working electrode (cathode) compared to that with a graphite felt counter electrode (anode). These results demonstrate that the optimized conditions of a single chamber and titanium mesh for the counter electrode have a positive effect on microbial electrochemical CO2 reduction.

Extremozymes: A Potential Source for Industrial Applications

  • Dumorne, Kelly;Cordova, David Camacho;Astorga-Elo, Marcia;Renganathan, Prabhaharan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.649-659
    • /
    • 2017
  • Extremophilic microorganisms have established a diversity of molecular strategies in order to survive in extreme conditions. Biocatalysts isolated by these organisms are termed extremozymes, and possess extraordinary properties of salt allowance, thermostability, and cold adaptivity. Extremozymes are very resistant to extreme conditions owing to their great solidity, and they pose new opportunities for biocatalysis and biotransformations, as well as for the development of the economy and new line of research, through their application. Thermophilic proteins, piezophilic proteins, acidophilic proteins, and halophilic proteins have been studied during the last few years. Amylases, proteases, lipases, pullulanases, cellulases, chitinases, xylanases, pectinases, isomerases, esterases, and dehydrogenases have great potential application for biotechnology, such as in agricultural, chemical, biomedical, and biotechnological processes. The study of extremozymes and their main applications have emerged during recent years.