• Title/Summary/Keyword: bio-matrix

Search Result 282, Processing Time 0.025 seconds

Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions

  • Jung, Gwon-Soo;Lee, Kyeong-Min;Park, Jin-Kyu;Choi, Seong-Kyoon;Jeon, Won Bae
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.276-281
    • /
    • 2013
  • In this study, we aimed to compare the morphogenetic and neuronal characteristics between monolayer cells and spheroids. For this purpose, we established spheroid formation by growing SH-SY5Y cells on the hydrophobic surfaces of thermally-collapsed elastin-like polypeptide. After 4 days of culture, the relative proliferation of the cells within spheroids was approximately 92% of the values for monolayer cultures. As measured by quantitative assays for mRNA and protein expressions, the production of synaptophysin and neuronspecific enolase (NSE) as well as the contents of cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins are much higher in spheroids than in monolayer cells. Under the all-trans-retinoic acid (RA)-induced differentiation condition, spheroids extended neurites and further up-regulated the expression of synaptophysin, NSE, CAMs, and ECM proteins. Our data indicate that RA-differentiated SH-SY5Y neurospheroids are functionally matured neuronal architectures.

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Preparation and Characterization of Mixed-matrix Membranes Containing MIL-100(Fe) for Gas Separation (MIL-100(Fe)를 함유한 혼합기질막(mixed-matrix membranes, MMMs)의 제조 및 기체 투과 특성 연구)

  • Song, Hye Rim;Nam, Seung Eun;Hwang, Young Kyu;Chang, Jong San;Lee, U Hwang;Park, You In
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.432-438
    • /
    • 2013
  • Mixed-matrix membranes (MMMs) containing MIL-100(Fe), a MOF type, were fabricated in this study. MMMs up to 30 wt% MOF loading were prepared, and their gas permeabilities were tested. $H_2$, $CO_2$, $O_2$, $N_2$, and $CH_4$ gas permeabilities increased with the MOF loading, while $SF_6$, the largest kinetic diameter in this study, exhibited reduction of gas permeability with the loading. Ideal gas selectivity of $N_2/SF_6$ improved by 40% as compared with pure polyimide membrane, suggesting the proposed MMMs were suitable for $N_2/SF_6$ separation.

Synthetic Prion Peptide 106-126 Resulted in an Increase Matrix Metalloproteinases and Inflammatory Cytokines from Rat Astrocytes and Microglial Cells

  • Song, Kib-Beum;Na, Ji-Young;Oh, Myung-Hoon;Kim, Sok-Ho;Kim, Young-Ha;Park, Byung-Yong;Shin, Gi-Wook;Kim, Bum-Seok;You, Myung-Jo;Kwon, Jung-Kee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.5-9
    • /
    • 2012
  • It has been shown that the accumulation of prion in the cytoplasm can result in neurodegenerative disorders. Synthetic prion peptide 106-126 (PrP) is a glycoprotein that is expressed predominantly by neurons and other cells, including glial cells. Prion-induced chronic neurodegeneration has a substantial inflammatory component, and an increase in the levels of matrix metalloproteinases (MMPs) may play an important role in neurodegenerative development and progression. However, the expression of MMPs in PrP induced rat astrocytes and microglia has not yet been compared. Thus, in this study, we examined the fluorescence intensity of CD11b positive microglia and Glial Fibrillary Acidic Protein (GFAP) positive astrocytes and found that the fluorescent intensity was increased following incubation with PrP at 24 hours in a dose-dependent manner. We also observed an increase in interleukin-1 beta (IL-$1{\beta}$) and tumor necrosis factor alpha (TNF-${\alpha}$) protein expression, which are initial inflammatory cytokines, in both PrP induced astrocytes and microglia. Furthermore, an increase MMP-1, 3 and 11 expressions in PrP induced astrocytes and microglia was observed by real time PCR. Our results demonstrated PrP induced activation of astrocytes and microglia respectively, which resulted in an increase in inflammatory cytokines and MMPs expression. These results provide the insight into the different sensitivities of glial cells to PrP.

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (I) - Velocity Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(I) - 작동유체 유속 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.389-394
    • /
    • 2007
  • The power output of the stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of the regenerator matrix, characteristics of working fluid velocities were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. When a regenerator is not filled with any wire screen, working fluid velocity of the oscillating flow shows 1.3 times faster than that of one directional flow. 2. When a regenerator is filled with the wire screen of No.50, working fluid velocity of the oscillating flow reveals 2.5 times faster than that of one directional flow. 3. When a regenerator is filled with the wire screen of No. 100, working fluid velocity of the oscillating flow shows 2 times faster than that of one directional flow, regardless of the number of packed wire screens. 4. Working fluid velocity is decreased wire the increase in number of meshes and packed wire screens.

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA) (아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가)

  • Chung, T.J.;Lee, B.H.;Lee, H.J.;Kwon, H.J.;Jang, W.B.;Kim, H.J.;Eom, Y.G.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.

Basic Study on the Regenerator of Stirling Engine (IV) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Steel Wire Matrix - (스털링 기관용 재생기에 관한 기초 연구 (IV) - 철선을 축열재로 한 재생기의 전열 및 유동손실 특성 -)

  • Oh D. G.;Kim T. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.202-209
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, 6 kinds of steel wires, 4 kinds of combined steel wires, 8 kinds of combined steel wires with screen meshes were used. The results are summarized as follows; Among 6 kinds of steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm,\;{\phi}1.2\;mm,\;{\phi}\;1.6\;mm,\;{\phi}2.0\;mm,\;{\phi}2.7\;mm),$ the two steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm)$ showed the highest in effectiveness. Among 4 kinds of combined steel wires $({\phi}l.6-{\phi}l.2\;mm,\;{\phi}1.2-{\phi}l.6\;mm,\;{\phi}0.9-{\phi}l.2\;mm,\;{\phi}l.2-{\phi}0.9\;mm),\;the\;{\phi}1.2-{\phi}0.9\;mm$ showed the highest in effectiveness. Among 8 kinds of combined steel wires with screen meshes $(150-{\phi}0.9\;mm,\;150-{\phi}l.2\;mm,\;{\phi}0.9\;mm-150,\;{\phi}1.2\;mm-150,\;150-{\phi}0.9\;mm-150,\;150-{\phi}1.2\;mm-150,\;150-{\phi}l.6\;mm-150,\;150-{\phi}2.0\;mm-150),\;the\;{\phi}l.2\;mm-150$ showed the highest in effectiveness.