• 제목/요약/키워드: bio-inspired isolator

검색결과 2건 처리시간 0.013초

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian;Xu-hong Zhou;Ke Ke;Michael CH Yam;Yu-hang Wang;Yue Qiu
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.221-238
    • /
    • 2023
  • This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.