• Title/Summary/Keyword: bio-fertilizer

Search Result 382, Processing Time 0.028 seconds

Optimization of Cultivation Conditions on Effective Seedlings of Veronica rotunda var. subintegra (Nakai) T.Yamaz. (산꼬리풀의 효과적인 육묘를 위한 재배조건 최적화)

  • Lee, Sang In;Yeon, Soo Ho;Cho, Ju Sung;Jeong, Mi Jin;Lee, Cheol Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.181-188
    • /
    • 2020
  • This study was conducted to identify the optimal conditions for seedling growth in Veronica rotunda var. subintegra (Nakai) T.Yamaz. which a endemic plant and can be development as ornamental plants. We sowed V. rotunda var. subintegra (Nakai) T.Yamaz. seeds, and exposed the seedling was different treatment conditions. We varied soil type and fertilizer concentration, shading ratio, additional fertilizer concentration, pretreatment light exposure and collection time of seeds. We found that seedling growth was good in horticultural substrate (with no additional fertilizer), but mixed soils supplemented with fertilizer inhibited growth, regardless of the fertilizer concentration. In the 55% shading treatment, seedling growth was greater than in the non-shading treatment. High concentration addition of fertilizer (Hyponex) promoted plant growth, in terms of both plant length and fresh weight. Exposure of seeds to a red light-source prior to germination had a greater effect on seedling growth than exposure to other light sources. Seedlings exhibited better growth when grown from seed collected in 2018, rather than 2017.

Effects of Bio-degradable Mulches on the Yield of Maize and the Density of Soil Microbe

  • Lim, Soo-Jeong;Lee, Min-Bum;Kim, Se-Won;Kim, Jang-Su;Heo, Su-Jeong;Choi, Seung-Chul;Yoon, Byeong-Sung;Kim, In-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.375-380
    • /
    • 2016
  • The use of polyethylene film has a problem such as increasing rural environmental contamination, collection costs and farmers' workload. The objective of this study was to evaluate bio-degradable films in terms of yield of maize and soil environment. Treatments were bio-degradable film A (BDF A), bio-degradable film B (BDF B), high density polyethylene (HDPE), and non-mulched (NM) soil. Daily mean values of soil temperature (10 cm depth) under BDF A, BDF B, and HDPE were higher than in NM soil by 2.2, 2.8, $3.1^{\circ}C$ respectively. In the mulching cultivation of maize, bio-degradable film began to degrade from 50~60days after the planting. The degradation was much progressed in the harvest time and almost decomposed in the following spring. The weight of ear of maize was not shown significantly by mulching treatments. There were little changes of soil chemical properties for the bio-degradable film mulching. After using bio-degradable films, the contents of biomass-C and dehydrogenase activity increased from 92 to $137{\sim}147mg\;kg^{-1}$, and from 87 to $123{\sim}168mg\;kg^{-1}$ respectively.

Effects of Biofertilizer on the Quality and Antioxidant Property of Rice (Oryza sativa L.)

  • Rico, Cyren Mendoza;Bhuiyan, Mohammad Kamrul Islam;Mintah, Lemuel O.;Shin, Dong-Il;Chung, Il-Kyung;Son, Tae-Kwon;Lee, Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.274-280
    • /
    • 2007
  • The effect of biofertilizer in enhancing nutrient quality and antioxidant property of rice grain was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely : RF = $N-P_2O_5-K_2O(11-5.5-4.8kg\;10a^{-1});$ half of the recommended fertilizer rate, $HRF=N-P_2O_5-K_2O(5.5-2.75-2.4kg\;10a^{-1}):$ HRF+Bio 250=HRF combined with 250 kg Biofertilizer 10 $a^{-1}$; HRF+Bio 500=HRF combined with 500 kg Biofertilizer 10 $a^{-1};$ Bio 250=250 kg Biofertilizer 10 $a^{-1};$ Bio 500=500 kg Biofertilizer 10 $a^{-1};$ and NF=No Fertilizer. Results showed that HRF+Bio 500 obtained a significantly higher protein content but a significantly lower amylose content compared with RF and NF treatments. Highest phytic acid content was recorded in NF treatment while the lowest was observed in HRF+500 treatment. The highest values in both electron donating ability and reducing power were obtained in HRF+Bio 500 treatment. All treatments obtained higher reducing power than that of the RF treatment and that NF treatment showed comparable values in both electron donating ability and reducing power with those of the treated plots. Highest antimutagenicity property was also observed in HRF+Bio 500 treatment followed by Bio 500 treatment. This study showed the possibility of using biofertilizer to enhance nutritional quality and antioxidant property of rice.

Effects of Biofertilizer on Growth and Yield of Rice

  • Bhuiyan Mohammad Kamrul Islam;Rico Cyren M.;Mintah Lemuel O.;Kim Man-Keun;Shon Tae-Kwon;Chung Il-Kyung;Lee Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.282-286
    • /
    • 2006
  • The effect of biofertilizer (compound of microbial inoculants or groups of micro-organisms) on growth and yield of rice was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely: $RF=N-P_2O_{5-}K_2O$ (11-5.5-4.8 kg $10a^{-1}$); half of the recommended fertilizer rate, $HRF=N-P_2O_5-K_2O$ (5.5-2.75-2.4 kg $10a^{-1}$); HRF+Bio 250=HRF combined with 250 kg biofertilizer $10a^{-1}$; HRF+Bio 500=HRF combined with 500 kg biofertilizer $10a^{-1}$; Bio 250=250 kg biofertilizer $10a^{-1}$; Bio 500=500 kg biofertilizer $10a^{-1}$; and NF = No Fertilizer. Results showed that the recorded values of plant height, tiller number and chlorophyll content at 40 to 60 days after transplanting (DAT) in HRF+Bio 500 were significantly higher than those recorded in the RF treatment. Similar observations between these two treatments were only recorded from 60 DAT onwards. Yield components were also superior in HRF+Bio 500 treatment and comparable to that of RF. The highest grain yield obtained in HRF+Bio 500 treatment (785.8 kg $10a^{-1}$) was statistically similar to that of RF (739.8 kg $10a^{-1}$) but significantly higher than that of NF (506.7 kg $10a^{-1}$). Finally, head grain recovery (90.9) was low while chalkiness (0.03) was high at HRF+Bio 500 treatment as compared with RF, which were (96.1) and (0.3), respectively. Results showed that combined treatment of HRF and 500 kg biofertilizer $10a^{-1}$ has similar effects on the growth and yield of rice with that of RF.

Liquid-Composting Conditions of By-product Obtained from Degradation of Animal Carcass for Agriculture Recycling (폐가축사체의 농업적 재활용을 위한 가축사체 액상부산물의 액비화 조건 구명)

  • Seo, Young-Jin;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Park, Ju-Wang;Choi, Ik-Won;Sung, Hwan-Hoo;Kang, Seog-Jin;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.348-354
    • /
    • 2013
  • BACKGROUND: Globally, concern about emerging infectious diseases of livestock is growing. For the disposal of the animal carcass, it is necessary to recycle the carcass into an agriculturally usable product. The objective of this study was to investigate the composting conditions of liquid by-product obtained from degradation of animal carcass. METHODS AND RESULTS: Optimum conditions of liquid fertilizer were investigated using different microorganisms, pHs, and volumes of microorganisms (Lactobacillus rhamnosus+Pichia deserticola). Based on the results from the optimum conditions, compost maturity and quality of liquid fertilizer were evaluated for 112 days. The compost maturity of liquid fertilizer were higher in the order of LP(Lactobacillus rhamnosus + Pichia deserticola) > BC(Bacillus cereus) > BS(Bacillus subtilis). The optimum condition under different volumes of LP was injection of 0.5 mL/100 mL. The compost maturity under different pHs were higher in the order of pH 7 > $$5{\geq_-}9{\frac{._-}{.}}11$$. The liquid by-product at 56 days after composting was completely decomposed. The concentrations of T-N, T-P and $K_2O$ in liquid fertilizer at 56 days were 0.94, 0.17 and 3.78%, respectively, and the sum of those concentrations was 4.89%. CONCLUSION(S): Liquid fertilizer of by-product using pig carcass was decomposed with optimum conditions(LP, pH 7, injection of 0.5 mL/100 mL) in 56 days after composting, and was suitable for official standard of commercial fertilizer.

Application of Immobilization Technology in Solubilization of Rock Phosphate

  • Walpola, Buddhi Charana;Kim, Ah Young;Jeon, Ju Hyeon;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.249-253
    • /
    • 2014
  • Phosphates solubilizing bacterial strains belong to Pantoea, Burkholderia and Enterobacter were isolated and employed in assessing their solubilization ability of Ca phosphate and ER phosphate (Eppawala Rock Phosphate). Among the bacterial strains used, PSB-13 (Pantoea rodasii) showed higher Ca-phosphate solubilization ($1100{\mu}g\;ml^{-1}$) as well as rock phosphate solubilization ($168{\mu}g\;ml^{-1}$). The strain was then immobilized in agar to further assess its phosphate solubilization ability. According to the results, agar encapsulated strain solubilized 0.3%, 7.31%, 20.24%, and 20.62% more Ca-phosphate and 11.53%, 15.29%, 28.48%, 36.55% (respectively in 4 cycles) more ER-phosphate than free cells. The reuse efficiency of agar entrapped bacterial cells for Ca-phosphate and ER-phosphate solubilization was greater than that by freely suspended bacterial cells. In conclusion, immobilization could enhance the phosphate solubilization capacity of the strains and thus could be used effectively in enhancing solubilization of ER phosphate.

Effect of Fungicides on Phosphate Solubilization by Klebsiella oxytoca and Enterobacter ludwigii

  • Walpola, Buddhi Charana;Keum, Mi-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.112-116
    • /
    • 2013
  • The aim of the present study was to isolate phosphate solubilizing bacteria (PSB) and to assess their potential tolerance to fungicides. Out of thirty PSB, two strains Klebsiella oxytoca and Enterobacter ludwigii were selected on the basis of their tolerance to fungicides. Both strains were assessed for their phosphate solubilizing ability using three different fungicides (difenoconazole, fluazinam and streptomycin) each with the concentrations of 0, 1, 2 or 3 times of the recommended rate. Both strains showed increased phosphate solubilization with difenoconazole at 1, 2 and 3 times of the recommended rate as compared to the phosphate solubilization of the control. The phosphate solubilization in Klebsiella oxytoca was recorded as 326, 538, 518 and 481 ${\mu}g\;mL^{-1}$ at 0, 1, 2 and 3 times of the recommended rate respectively, whereas in Enterobacter ludwigii it was recorded as 395, 499, 529 and 533 ${\mu}g\;mL^{-1}$ respectively at various doses. Based on the present findings, it may be concluded that both strains have the potential to be used as bio-inoculants which can solubilize phosphate even at the higher doses as compared to the recommended rate of fungicides.

Effect of application of coffee sludge and dried food waste powder on the growth Peucedanum japonicum Thunberg

  • Jeon, Young-Ji;Hwang, Hyun-Chul;Eun, Jin-A;Jung, Samuel;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.193-204
    • /
    • 2020
  • This experiment was conducted to study the effect of organic fertilizer on the growth of Peucedanum japonicum Thunberg and the change of soil chemical characteristics. The organic matter contents of coffee sludge and dried food waste powder were 44.26 and 51.18%, respectively. These values exceed the organic matter content of organic fertilizers recommended by the Rural Development Administration (RDA) of South Korea by more than 30%. Accordingly, they indicate the possibility of their use as organic fertilizers. The results from the analysis of soil properties after cultivation showed that the organic matter content of coffee sludge amended soils was two-fold higher than that of dried food waste powder amended soils. However, the content of available phosphorus was two times lower in the coffee sludge amendments. It is expected that the dried food waste powder was actively used to decompose organic substances, and that phosphoric acid was added by the soil microorganisms used to decompose organic substances. In terms of Peucedanum japonicum Thunberg growth, leaf discoloration was observed for all treatments except with the standard rate of dried food waste powder. The standard rate of dried food waste powder also produced relatively better results than other treatments with regard to other growth characteristics such as root length (34.08 cm), root diameter (0.78 cm), and fresh root weight (4.77 g plant-1). Therefore, the standard rate of dried food waste powder produced better results than other treatments and can be used as an organic fertilizer in the growth of Peucedanum japonicum Thunberg.

Comparing the composting characteristics of food waste supplemented with various bulking agents

  • Lee, Jae-Han;Yeom, Kyung-Rai;Yang, Jun-Woo;Choi, You-Jin;Hwang, Hyun-Chul;Jeon, Young-Ji;Lee, Chang-Hoon;Choi, Bong-Su;Oh, Taek-Keun;Park, Seong-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.897-905
    • /
    • 2019
  • To compare the composting characteristics of food waste supplemented with various bulking agents, aerated composting was performed by mixing sawdust, ginkgo leaves, insect feces, and mushroom waste at ratios of 6 : 4 (w/w). The initial temperatures (day after treatment [DAT] 3) of the sawdust, ginkgo leaves, insect feces and the mushroom waste mixtures were 39, 58, 65, and 51℃, respectively. The DAT 3 temperature was the highest in the food waste-insect feces mixture (65℃) and the lowest in the sawdust one (39℃). However, the insect feces treatment was terminated at DAT 21 because of a high water content (70.92%). The water content (DAT 56) of the composted food waste supplemented with sawdust, mushroom waste, and ginkgo leaves stood at 51.28, 39.81, and 44.92%, respectively. Therefore, the fully mature composts satisfied the water content requirement of less than 55% as recommended in the fertilizer standards of the RDA of Korea. The results of the CoMMe-101, Solvita and seed germination index methods indicate that the mushroom waste and ginkgo leaves treatments matured relatively quicker than that of the sawdust one. Based on the above observations, it is concluded that the mushroom waste and ginkgo leaves are more effective bulking agents compared to sawdust and as such, are recommended as suitable replacements for sawdust in food waste composting.