• Title/Summary/Keyword: bio thin film

검색결과 67건 처리시간 0.034초

성견 발치와에 매식한 2종의 Bovine Bone Powder가 치유에 미치는 영향에 관한 조직학적 연구 (Histologic Study on the Effect of Two Types of Bovine Bone Powder in Extraction Socket of Beagle Dogs)

  • 박태성;임성빈;정진형;김종여
    • Journal of Periodontal and Implant Science
    • /
    • 제30권3호
    • /
    • pp.527-538
    • /
    • 2000
  • Several extraction cases with advanced bone loss as a result of periodontal disease, root or labial bone fracture, extensive caries, and periapical lesions occur esthetic, functional problems and severe bone loss. Therefore, to treat these cases used several surgical methods and socket preservation among this therapies have been evaluated simple, effective and good prognosis in the implant placement. Socket preservation therapy have been used with barrier membranes or/and graft materials. Deproteinized bovine bone mineral have been evaluated ideal grafting materials. Recently, calcium-phosphate thin film coated bovine bone powders were developed in our country, but the study for these material wasn't reported. When two types of xenograft materials were implanted in extraction sockets of Beagle dogs, the effects of these were analyzed after 4 weeks and 8 weeks histological views. The results of this study were as follows. 1. In control groups, 4 weeks after implantation, the extraction sockets were filled with connective tissue which has dilated vessels and epithelial growth. And after 8 weeks, irregular connective bundles were observed. But new bone formation was not seen. 2. In Bio-Oss groups, epithelial growth was not seen and bone powder was covered with connective tissue fiber. New bone formation was found around the interproximal bone. There was no special change seen after 8 weeks, connective tissue fibers became more regular, and bone growth near bone powder was not made well. 3. In Ca-P BBP groups, epithelial cells didn't grow in the extraction sockets, there was a lot of new bone made around the bone powder after 8 weeks, new bone around bone powder was replaced with mature bone. It is thought that bone powder grafting into the extraction sockets is very useful for conservation of ridge, and Ca-P BBP is more effective in bone formation than Bio-Oss.

  • PDF

랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구 (Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique)

  • 김태호;송석현;조경일;구자승
    • 접착 및 계면
    • /
    • 제20권3호
    • /
    • pp.110-115
    • /
    • 2019
  • 그래핀으로 박리시키기 위한 한 가지 방법으로 산화그래핀이 많은 관심이 집중되고 있다. 산화그래핀의 산화그룹은 다양한 기능기와 수소결합을 시킬 수 있어 여러 응용분야에 이를 적용시키기 위한 연구가 활발히 진행되고 있다. 하지만 산화그래핀 자체만으로는 실질적으로 응용에 요구되어지는 기계적 물성을 만족시킬 수 없다. 따라서 본 연구에서는 홍합 단백질을 생체모사한 폴리도파민을 이용하여 산화그래핀과 결합시키고 액체-기체 계면에서 대면적의 복합체막을 형성 시켰다. 또한 폴리도파민-산화그래핀 복합체 박막의 모폴로지 구조도 제어하여 나노 링클 구조를 가지는 복합체 막을 얻었다. 기계적으로 우수하며 정교한 나노 구조를 형성할 수 있어 차세대 해수담수화 멤브레인 또는 탄소 복합재료에 이용될 수 있을 것으로 기대될 수 있다.

Evaluation of Antioxidant Potential and UV Protective Properties of Four Bacterial Pigments

  • Rupali Koshti;Ashish Jagtap;Domnic Noronha;Shivali Patkar;Jennifer Nazareth;Ruby Paulose;Avik Chakraborty;Pampi Chakraborty
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.375-386
    • /
    • 2022
  • In the present study, four distinctly colored bacterial isolates that show intense pigmentation upon brief ultraviolet (UV) light exposure are chosen. The strains are identified as Micrococcus luteus (Milky yellow), Cryseobacterium pallidum (Yellow), Cryseobacterium spp. (Golden yellow), and Kocuria turfanensis (Pink) based on their morphological and 16S rDNA analysis. Moderate salinity (1.25%), 25-37℃ temperature, and pH of 7.2 are found to be the most favorable conditions of growth and pigment production for all the selected isolates. The pigments are extracted using methanol: chloroform (1:1) and the purity of the pigments are confirmed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Further, Fourier transform infrared (FTIR) and UV-Visible spectroscopy indicate their resemblance with carotenoids and flexirubin family. The antioxidant activities of the pigments are estimated, and, all the pigments have shown significant antioxidant efficacy in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The UV protective property of the pigments is determined by cling-film assay, wherein, at least 25% of UV sensitive Escherichia coli survive with bio-pigments even after 90 seconds of UV exposure compared to control. The pigments also hold a good sun protective factor (SPF) value (1.5-4.9) which is calculated with the Mansur equation. Based on these results, it can be predicted that these bacterial pigments can be further developed into a promising antioxidant and UV-protectant for several biomedical applications.

양자점 (Quantum dot) 기술의 현재와 미래 (Present Status and Future Prospect of Quantum Dot Technology)

  • 홍현선;박경수;이찬기;김범성;강이승;진연호
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.451-457
    • /
    • 2012
  • Nowadays, research and development on quantum dot have been intensively and comprehensively pursued worldwide in proportion to concurrent breakthrough in the field of nanotechnology. At present, quantum dot technology forms the main interdisciplinary basis of energy, biological and photoelectric devices. More specifically, quantum dot semiconductor is quite noteworthy for its sub-micro size and possibility of photonic frequency modulation capability by controlling its size, which has not been possible with conventionally fabricated bulk or thin film devices. This could lead to realization of novel high performance devices. To further understand related background knowledge of semiconductor quantum dot at somewhat extensive level, a review paper is presently drafted to introduce basics of (semiconductor) quantum dot, its properties, applications, and present and future market trend and prospect.

접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성 (Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc)

  • 김주영;조규만;이경석
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

DC 펄스 마그네트론 스퍼터링으로 증착된 TiO2 박막의 특성변화에 관한 연구 (Deposition Characteristics of TiO2 Thin Films Prepared by DC Pulsed Magnetron Sputtering)

  • 안은솔;허성보;김규식;정우창;박용호;박인욱
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.43-49
    • /
    • 2015
  • This study reports a fabrication of $TiO_2$ on the surface of dental implants by pulsed d.c. magnetron sputtering from a Ti target. A systematic investigation on the microstructure and mechanical properties of $TiO_2$ films was carried out with the variation of $O_2$ contents and substrate temperatures. The effects of deposition parameters on the fabricated structures were investigated by X-ray diffraction (XRD) technique and field emission scanning electron microscope (FE-SEM). Hydrophilic properties were evaluated by measuring water contact angles on the film surface. With increasing $O_2$ contents up to 40%, surface roughness of $TiO_2$ film increased while relatively smooth surface was obtained with 50% $O_2$ contents. Surface roughness and adhesion strength both increased as substrate temperature increased up to $200^{\circ}C$. From these results, hydrophilic and adhesive properties of the present $TiO_2$ films synthesized with 40% $O_2$ at $200^{\circ}C$ are regarded to be suitable for bio-compatible applications.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

역삼투막 표면에 폴리비닐알코올 코팅을 통한 파울링 현상 감소연구 (Studies on the Fouling Reduction through the Coating of Poly (vinyl alcohol) on Polyamide Reverse Osmosis Membrane Surfaces)

  • 김일형;지은희;임지원;정성일
    • 멤브레인
    • /
    • 제22권4호
    • /
    • pp.272-279
    • /
    • 2012
  • 본 연구에서는 폴리아마이드 역삼투 복합막 표면에 중성 친수성 고분자인 poly (vinyl alcohol) (PVA)를 코팅한 후 모델 오염물질인 bovine serum albumin (BSA), humic acid (HA), sodium alginate (SA)에 대하여 파울링 개선 효과가 있는지를 알아보고자 하였다. 고분자의 파울링 유도를 위해 모델 오염물질인 BSA, HA, SA 등이 100 ppm으로 용해된 공급원액을 2, 4, 8 atm 조건에서 PVA 코팅된 막과 코팅되지 않은 막에 대하여 파울링 실험을 수행한 결과. 압력이 증가함에 모든 오염물질에 대해서 파울링은 심화되었다. 파울링 심화 현상은 BSA > HA > SA의 순으로 일어났으며, PVA가 코팅된 막에 대해 파울링 개선효과는 HA > BSA > SA의 순으로 나타났다. 전자현미경 사진 결과에서도 같은 경향을 보여주고 있다. 결국, PVA가 코팅된 역삼투막은 어느 경우에서나 파울링 개선효과는 뚜렷하게 있었으며 HA의 경우에서 가장 두드러졌다.