• Title/Summary/Keyword: binocular stereoscopic display

Search Result 27, Processing Time 0.023 seconds

Time Series Evaluation of Visual Fatigue and Depth Sensation Using a Stereoscopic Display

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.188-194
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. These conflicts can affect the observer's ability to fuse binocular images and may cause visual fatigue. In this study, time series changes in visual fatigue and depth sensation when viewing stereoscopic images with changing parallax were examined. In particular, the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions, were examined. Then a comparative analysis of the 2D and 3D conditions was performed based on the visual function. To obtain data regarding the visual function, the time series changes in the spontaneous-blinking rate before and during the viewing of 3D images were measured. The time series change results suggest that 2D and 3D images cause significantly different types of visual fatigue over the range of binocular disparity.

Time-series changes in visual fatigue and depth sensation while viewing stereoscopic images

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1099-1102
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. Those conflicts can affect the ability to fuse binocular images and may cause visual fatigue. This study examined time-series changes in visual fatigue and depth sensation while viewing stereoscopic images with changing parallax. We examined the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions. The time-series results suggest that 2D and 3D images produce significantly different types of visual fatigue over the range of binocular disparity.

  • PDF

In Watching 3D Stereoscopic Display Using the Binocular Disparity, the Effect of Pupillary Distance of Adults and Children on the Perception of 3D Image (양안시차를 이용한 3D 입체영상 장치의 시청에 있어 성인 및 아동의 동공간거리가 미치는 영향)

  • Kang, Seok Hyon;Hong, HyungKi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.299-305
    • /
    • 2011
  • Purpose: In watching 3D stereoscopic display using the binocular disparity, effect of difference of the pupillary distance between the adults and children on the perception of depth were investigated. Methods: The average PD of children was determined from the PD measurements of children of the elementary school of 2nd and 3rd grade in Seoul. The location of crossing visual axes were derived from the relation of the binocular disparity and the PD for the adults and children. Results: The average PD of the children was measured to be 57.3 mm which was smaller than the average PD of the adults that was known to be about 65 mm. As the binocular disparity increases to the positive direction, the crossing location steeply moves farther behind the screen. On the other hand, when the binocular disparity increases to the negative direction, the crossing location gradually moves toward the viewer. For the same amount of the binocular disparity, the crossing locations were derived to be larger for the children than the adults due to the difference of the PD. Therefore, children will perceive larger depth than the adults. Conclusions: Small PD of the viewer causes the larger amount of the depth perception. In producing the stereoscopic images, the average PD of children as well as adults need to be considered.

Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images

  • Choi, Hee-Jin;Jung, Jae-Hyun;Kim, Hwi;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.383-387
    • /
    • 2010
  • The stereoscopic three-dimensional (3D) display provides a 3D image by inducing binocular disparity for the observers who wear special glasses. With the rapid progress in flat panel display technologies, the stereoscopic 3D display is becoming a new benefit-model of the current display industry, and several kinds of commercial stereoscopic 3D products have been released and are attracting people. Nowadays, the motion picture quality of the 3D image becomes as important as resolution or luminance since most of the commercial 3D products are 3D televisions or 3D monitors which are required to display a clear motion 3D image. In this paper, an analysis and simulation of the motion picture quality of stereoscopic 3D image is proposed, and a comparison of the motion picture performance among the current stereoscopic 3D technologies is also provided.

Monocular 3D Vision Unit for Correct Depth Perception by Accommodation

  • Hosomi, Takashi;Sakamoto, Kunio;Nomura, Shusaku;Hirotomi, Tetsuya;Shiwaku, Kuninori;Hirakawa, Masahito
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1334-1337
    • /
    • 2009
  • The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  • PDF

System development of fatigue-less HMD system 3DDAC(3D Display with Accommodative Compensation): System implementation of Mk.4 in light-weight HMD

  • Toshiaki-SUGIHARA;Tsutomu-MIYASATO
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.51-54
    • /
    • 1998
  • This paper describes the development of the 3DDAC mk.4 system, which is a brand new implementation on the research program. The 3DDAC is a fatigue-less stereoscopic display system that is provided with a compensating function of accommodation for binocular disparity 3D image representation. The mk.4 system also features a light-weight HMD style.

  • PDF

Method of Display and Processing of Binocular Stereoscopic Image for 3D Endoscopy (3차원 내시경술을 위한 양안 입체 영상처리 및 디스플레이 방법)

  • 송철규
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.531-538
    • /
    • 1998
  • This paper represents the design of 3D endoscopic image processing system in order to Improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. The proposed 3D systems have four features of stereo endoscopic image processing The multiplexer give field seauential stereo for recording and for aligning cameras and viewing stereo with 3D monitor. Demultiplexing of the field sequential image which separates out the R and L images for dual TFT-LCD 3D monitor viewed with passive polarized glasses. separable processing of the left and right eye images, and design of TFT-LCD 3D monitor. The viewing angle, zone, and image quality of the Polarization-type Stereoscopic Display (SM500TFT-3D) system which we have developed using 15 Samsung TFT-1.CD with a screen resolution of 1024×768 pixels were measured and compared with those of Electric Shutter-type Stereoscopic Display system. The result of experiments shows that the Polarization-type Stereoscopic Display System using TFT-LCD has a wade viewing angle and zone which Is necessary fort multi-view and it has better image quality and stability of the optical performances than the Electric Shutter-type does.

  • PDF

Visual Discomfort Analysis of Binocular Depth Change on 3D Stereoscopic Imaging (입체영상의 양안 깊이 변화에 따른 시청 피로도 분석)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • The development of stereoscopic display hardwares and 3D authoring softwares expands its application areas from particular virtual simulation applications to general movies, games, advertising applications. However, the binocular-based 3D stereoscopic images cause fatigue to viewers. Recent performed many research results about the binocular stereoscopy's depth perception and viewers' fatigue are derived from experimental users studies. In some results, watching and making guidelines for 3D stereoscopic imaging contents are introduced. The 3D stereoscopic-related contents have the contradictory aspects, which are audiences' pursuit of a tolerable minimum fatigue and producer's its of excessive depth changes for providing viewers' immersion. This paper provides user experiments and analysis data in aspects of 3D depth changes. For use of producers, a safety zone and translational velocity of 3D depth changes are introduced. Also, on the viewer side, we present the depth change adaptation time by using an EEG device.

Non-glasses Stereoscopic 3D Floating Hologram System using Polarization Technique

  • Choi, Pyeongho;Choi, Yoonhee;Park, Misoo;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • The image projected onto the screen of the floating hologram is no more than a two-dimensional image. Although it creates an illusion that an object appears to float in space as it moves around while showing its different parts. This paper has proposed a novel method of floating 3D hologram display to view stereoscopic three-dimensional images without putting on glasses. The system is comprised of a sharkstooth scrim screen, projector, polarizing filter for the projector, and a polarizing film to block the image projected from the sham screen. As part of the polarization characteristics, the background image and the front object have completely been separated from each other with the stereoscopic 3D effect successfully implemented by the binocular disparity caused by the distance between the two screens.

The Effect of Accommodation Cue Manipulation at Stereoscopic Display on Binocular Fusion (양안식 디스플레이에 제시되는 자극의 조절단서 조작이 양안융합에 미치는 영향)

  • Park, Jong-Jin;Kim, Shinwoo;Li, Hyung-Chul O.
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.569-580
    • /
    • 2022
  • In this study, we investigated the effect of peripheral blur on binocular fusion to resolve binocular fusion failure which is one of the 3D visual fatigues in the perspective of human visual system. With stimulus having discrete disparity change, binocular fusion failure rate for target stimulus having crossed and uncrossed disparity decreased. And target stimulus having continuous disparity also required relatively larger binocular disparity when peripheral blur was presented with target stimulus rather than when peripheral blur was not presented. These results imply that peripheral blur facilitated binocular fusion in the situation of binocular disparity change, and suggest that considering the characteristics of human three-dimensional visual systems, manipulating 3D contents can improve visual discomfort caused by binocular displays at low costs.