• Title/Summary/Keyword: binding treatment

Search Result 1,277, Processing Time 0.03 seconds

Drug-Biomacromolecule Interaction (VI) Binding of Nalidixic Acid and Probenecid to Bovine Serum Albumin (약물과 생체고분자간의 상호작용(VI) Nalidixic Acid 및 Probenecid와 우혈청 단백간의 결합에 관한 연구)

  • 김종국;임연수;양지선
    • YAKHAK HOEJI
    • /
    • v.27 no.4
    • /
    • pp.257-261
    • /
    • 1983
  • Binding of nalidixic acid which is used primarily in the treatment of urinary infection and probenecid which is used as a uricosuric agent to bovine serum albumin were studied using difference spectrophotomeric method. 2-(4'-Hydroxybenzeneazo) bcnzoic acid as a spectrophotometric probe was used for measuring the binding of nalidixic acid and probenecid to bovine serum albumin. The association constants of nalidixic acid and probenecid were $1.58{\times}10^{4}M^{-1}$ and $1.70{\times}10^{4}M^{-1}$, respectively.

  • PDF

Effect of Electrolytes on the Saturable Binding of Morphine in Rat Brain Tissue (백서(白鼠) 뇌조직(腦組織)에서 Morphine의 Saturable Binding에 미치는 전해질(電解質)의 영향(影響))

  • Ko, Bok-Hyun;Chae, Soo-Wan;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.33-44
    • /
    • 1982
  • The binding in vitro of an opiate agonist, $(^3H)-morphine$, was studied using rat brain slices which were incubated in the modified Krebs-Henseleit bicarbonate buffer solution containing various concentrations of electrolytes with or without morphine, naloxone or morphine+naloxone at $4^{\circ}C$ for 24 hours. The binding of $(^3H)-morphine$ may be seperated into two component; one a saturable binding and the other nonsaturable. The saturable binding may be calculated from the differences in binding observed in the absence and presence of high concentration of morphine. The maximal saturable binding and $K_D$ value in the naive preparations were $0.32{\pm}0.02\;pmole/mg$ protein and $0.75{\pm}0.07\;nM$ respectively. The saturable binding of $(^3H)-morphine$ was significantly increased by low temperature-treatment, while $K_D$ value was not changed. Morphine in the incubation media significantly increased the saturable binding of $(^3H)-morphine$ and $K_D$ value. Naloxone also increased the maximal saturable binding of $(^3H)-morphine$ and $K_D$ value of the drug. Decrease of $K^+\;and\;Mg^{++}$, and addition of $Mn^{++}$ in the incubation media significantly increased the saturable binding of $(^3H)-morphine$, but decrease of $Na^+$and increase of $Ca^{++}$ in the incubation media did not influence the binding. The increment of the saturable binding of $(^3H)-morphine$ by nonlabeled morphine in the incubation media was notaffected by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or addition of $Mn^{++}$ into the incubation media, but was inhibited by increase of $Ca^{++}$ in the incubation media, while the increment of the saturable binding of $(^3H)-morphine$ was net observed by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or increase of $Ca^{++}$ in the incubation media. The above results indicate that change of opiate binding sites in quality, i.e. affinity, and quantity, i.e. number of binding sites, may occur by low temperature-treatment in the absence and presence of morphine or naloxone and that electrolytes play role of the changes of opiate binding sites.

  • PDF

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

STUDIES ON THE MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ IN BONE MARROW, SPLEEN, AND MACROPHAGE (비장, 골수세포 및 대식세포에서의 Macrophage Inflammatory $Protein-1{\alpha}(MIP-1{\alpha})$ 에 관한 연구)

  • Song, In-Taeck;Oh, Kwi-Ok;Kim, Hyung-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.48-55
    • /
    • 1993
  • Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ from activated T cell or macrophage, which is small inducible cytokine of unkown biological function, has been shown to display inflammation chemokinetic activities, as well as myelosuppressive effect on more immature progenitor cells. In this paper we show the $MIP-1{\alpha}$ mRNA expression and the presence of $MIP-1{\alpha}$ binding sites from murine macrophage cell line RAW 264.7, and primary cells of mouse bone marrow and spleen. $MIP-1{\alpha}$ mRNA was induced from LPS-stimulated RAW 264.7, but not inhibited by cyclosporin A treatment, and also was expressed from mouse splenocyted and bone marrow cell which were not increased by ferritin or lactoferrin treatment. The results of receptor binding assay showed that radiolabeled RAW 264.7 cell with kd value of 0.91 nM, and binding sites per cell of 378. bone marrow cell and splenocyte also appeared to have $MIP-1{\alpha}$ binding sites 33 and 11 per cell, respectiviely.

  • PDF

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Changes of the Binding Abilities of Immunoglobulin G and E on Gamma-Irradiated Ovalbumin by Proteolytic Enzymes

  • Lee, Ju-Woon;Seo, Ji-Hyun;Kim, Jae-Hun;Yook, Hong-Sun;Lee, Soo-Young;Byun, Myung-Woo
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.355-357
    • /
    • 2005
  • This study evaluated the binding abilities of rabbit anti-ovalbumin (OVA) immunoglobulin G (IgG) and egg-allergic patient IgE on gamma-irradiated OVA during proteolysis using pepsin and trypsin. The concentrations of both the intact and the irradiated OVAs decreased during proteolysis when detected with IgG However, when detected by patient IgE the concentration of the intact OVA decreased up to 30 min after the trypsin treatment and increased thereafter. Irradiated OVA detected by patient IgE showed a lower initial concentration (0.16%) than that of the intact OVA, and this reduced concentration was maintained stably. The results indicate that irradiation, rather than enzymatic treatment, could reduce the binding of the irradiated and enzyme-treated OVA. Therefore, gamma irradiation has potential as an effective method to reduce OVA-induced allergy and may enhance the safety of egg-allergic individuals.

Structural Damage of DNA by 6-Sulfooxymethyl Benzo(a)pyrene

  • Cho, Young-Sik;Chung, An-Sik
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • The effect of 6-sulfooxymethyl benzo(a)pyrene (SMBP) on conformational changes of calf thymus DNA was investigated. As SMBP is a strong electrophile, the covalent binding of SMBP to DNA should distort three dimensional conformation of DNA at the binding sites. A formaldehyde-unwinding methods were used to determine the rate of DNA denaturation. The increase in absorbance at 251nm was detected by addition of formaldehyde following treatment with SMBP. SMBP changed supercoiled DNA to relaxed and linear DNA as determined by electrophoresis, which was similar to the change in DNA due to in vitro treatment with benzo(a) pyrene diol epoxide. Treatment with SMBP completely denatured DNA under alkaline conditions. However, DNA was nicked or partially denatured under neutral condition. The absorption band of DNA was increased by the treatment with SMBP in V79 cells, which may be explained by the formation of stabilized SMBP-DNA adduct.

  • PDF

Inactivation of the Muscarinic Receptor Subtype by Dibenamine (디벤아민에 의한 무스카린 수용체 아형의 불활성화)

  • 이신웅;장태수
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.645-653
    • /
    • 1995
  • Dibenamine inhibited [$^{3}$H]quinuclidinyl benzilate ([$^{3}$H]QNB) binding in both concentration and incubation time-dependent manners. The $IC_{50}$/ value of dibenamine for the inhibition of the specific binding of 100 pM [$^{3}$'H]QNB following incubation of cerebral microsomes with dibenamine at 37.deg. C for 15 min was 20.mu.M. Dibenamine irreversibly decreased the binding site concentration for [$^{3}$H]QNB binding without affecting the affinity of [$^{3}$H]QNB for the muscarinic receptor. Analysis of the pirenzepine inhibition curve of [$^{3}$H]QNB binding to cerebral microsomes indicated the presence of two receptor subtypes with high(M$_{1}$ receptor, Ki=5nM) and low (M$_{2}$ receptor, Ki=160nM) affinity for pirenzepine. However, dibenamine(20.mu.M) treatment under the condition employed in these experiments caused steepening of the pirenzepine competition curve. The Ki value for pirenzepine in dibenamine treated-microsomes was approximately 120nM. suggesting a selective decrease in the number of M$_{1}$ receptor. Although dibenamine also inhibited [$^{3}$H]QNB binding to ventricular microsomes with $IC_{50}$/ value of 120.mu.M, the sensitivity for dibenamine in the ventricle was much lower than that in the cerebrum. These results indicate that dibenamine at low concentrations welectively inactivates the muscarinic M$_{1}$ receptor.

  • PDF

Combining the Power of Advanced Proteome-wide Sample Preparation Methods and Mass Spectrometry for defining the RNA-Protein Interactions

  • Liu, Tong;Xia, Chaoshuang;Li, Xianyu;Yang, Hongjun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.115-124
    • /
    • 2022
  • Emerging evidence has shown that RNA-binding proteins (RBPs) dynamically regulate all aspects of RNA in cells and involve in major biological processes of RNA, including splicing, modification, transport, transcription and degradation. RBPs, as powerful and versatile regulatory molecule, are essential to maintain cellular homeostasis. Perturbation of RNA-protein interactions and aberration of RBPs function is associated with diverse diseases, such as cancer, autoimmune disease, and neurological disorders. Therefore, it is crucial to systematically investigate the RNA-binding proteome for understanding interactions of RNA with proteins. Thanks to the development of the mass spectrometry, a variety of proteome-wide methods have been explored to define comprehensively RNA-protein interactions in recent years and thereby contributed to speeding up the study of RNA biology. In this review, we systematically described these methods and summarized the advantages and disadvantages of each method.

Nelumbinis Semen Reverses a Decrease in $5-HT_{1A}$Receptor Binding Induced by Chronic Mild Stress, a Depression-like Symptom

  • Jang, Choon-Gon;Kang, Moon-Kyu;Cho, Jae-Han;Lee, Sun-Bok;Kim, Hyun-Taek;Park, Soon-Kwon;Lee, Jin-Woo;Park, Seong-Kyu;Hong, Moo-Chang;Shin, Min-Kyu;Shim, In-Sup;Bae , Hyun-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1065-1072
    • /
    • 2004
  • Depression is associated with a dysfunctional serotonin (5-hydroxytryptamine; 5-HT) system. More recently, several lines of evidence suggest that an important factor in the development of depression may be a deficit in the function and expression of $5-HT_{1A}$ receptors. The present study assessed if Nelumbinis Semen (N. s.) had an anti-depression effect through reversing a decrease in $5-HT_{1A}$receptor binding in rats with depression-like symptoms induced by chronic mild stress. Using a $5-HT_{1A}$ receptor binding assay, with a specific $5-HT_{1A}$receptor agonist, 8- OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin), the mechanism of the anti-depression effect of N. s. on rats was investigated, and the effects compared with two well-known antidepressants, Hyperium Perforatum (St. Johns Wort) and fluoxetine (Prozac). Animals were divided into five groups: the normal (N) group without chronic mild stress (CMS), the control (C) group under CMS for 8 weeks, the Nelumbinis Semen (N. s.) treatment group under CMS for 8 weeks, the Hyperium Perforatum (H. p.) treatment group under CMS for 8 weeks and finally, the fluoxetine (F) treatment group under CMS for 8 weeks. Each treatment was administered to rats during the last 4 weeks of the 8-week CMS. A sucrose intake test was performed to test the anti-depression effect of N. s. The N. s. treatment significantly reversed the decreased sucrose intake under CMS (P<0.05 compared to control group under CMS). In the CA2 and CA3 regions of the hippocampus, both N. s. and H. p. reversed the CMS-induced decrease in $5-HT_{1A}$receptor binding. In the I to II regions of the frontal cortex, N. s. and H. p. also reversed the CMS-induced decrease in$5-HT_{1A}$receptor binding, and even showed a significant increase in $5-HT_{1A}$receptor binding compared to the F treatment group (N. s. vs. P, p<0.05, H. p. vs. P, p<0.05). However, in the hypothalamus, all treatments reversed the CMSinduced decrease in $5-HT_{1A}$receptor binding. This reversal effect of N. s. on the decrease in $5-HT_{1A}$receptor binding in the frontal cortex, hippocampus and hypothalamus of rat brains was very similar to that of H. p, but different from that of F. It is concluded that N. s. presents an anti-depression effect through enhancing $5-HT_{1A}$receptor binding.