• Title/Summary/Keyword: binding potential

Search Result 937, Processing Time 0.024 seconds

Characteristics and Immunomodulating Activity of Lactic Acid Bacteria for the Potential Probiotics (Probiotics로서의 젖산균주의 특성 및 면역활성)

  • Seo, Jae-Hoon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.681-687
    • /
    • 2007
  • This study was designed to examine the suitable characteristics of potential probiotic bacteria. Possible probiotic bacteria, including Lactobacillus acidophilus DDS-1, Lb. acidophilus B-3208, Bifidobacterium bifidum KCTC 3357, Lb. plantarum, Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, and Lactococcus lactis ssp. lactis ATCC 7962 were selected. We then measured their acid and bile tolerances, adhesion properties in the gastrointestinal tract, antimicrobial activity against pathogenic bacteria, and immunomodulation activity. The acid tolerances of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, Lb. plantarum, and Leu. mesenteroides ssp. mesenteroides ATCC 8293, in PBS (pH 2.5) for 2 hr, were high enough that 50% of the inocula survived. The bile tolerances of all bacteria, except Lc. lactis ssp. lactis ATCC 7962, were also observed at a 3% oxgall concentration in MRS broth. The results of the adhesion property assay showed that the total binding affinities of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, and B. bifidum were about three times higher than those of the other bacteria. In testing their antimicrobial activities against pathogens, Lb. acidophilus B-3208, B. bifidum KCTC 3357, and Lb. plantarum inhibited the growth of pathogenic bacteria. For their immunomodulation activity, the cell wall fractions from Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 showed the highest bone marrow cell proliferation activities. However, the cell wall fractions of Lb. acidophilus DDS-1 and B. bifidum, and the cytosol fraction of Lc. lactis ssp. lactis ATCC 7962 showed higher macrophage stimulation activities than those of the other bacteria. Since Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 satisfy the requirements for probiotics, they can be considered suitable probiotic bacteria.

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Cerebrolysin Attenuates Astrocyte Activation Following Repetitive Mild Traumatic Brain Injury: Implications for Chronic Traumatic Encephalopathy (만성외상성뇌병증과 관련된 반복적 경도 외상성뇌손상(rmTBI)모델에서 cerebrolysin의 별아교 세포활성 억제효과)

  • Kang, Hyun Bae;Kim, GiHun;Kim, HyunJoong;Han, Sa Rang;Chae, Dong Jin;Song, Hee-Jung;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1096-1103
    • /
    • 2013
  • Chronic traumatic encephalopathy (CTE), which is common in athletes, is a progressive neurodegenerative disease and a long-term consequence of repetitive closed head injuries. CTE is regarded as a chronic brain syndrome due to the effects of repetitive traumatic brain injury (TBI). Because neurotrophic factors are neuroprotective in models of brain and spinal cord injuries, we examined the effects of cerebrolysin, a mixture of various neurotrophic factors, on brain pathology in a mouse model of repetitive mild TBI (rmTBI), which is a good model of CTE. Five groups were created and treated as follows: groups 1 and 2: rmTBI for 4 weeks following cerebrolysin injection for 4 weeks; groups 3 and 4: rmTBI for 8 weeks with or without cerebrolysin injection for 4 weeks; group 5: control. We found that p-tau expression was increased in the pyramidal layer of the cortex and hippocampus, particularly the CA3 region, but not in the CA1 region and the dentate gyrus (DG). Intra-tail vein administration of cerebrolysin ($10{\mu}l$ of 1 mg/ml) after/during rmTBI treatment reduced p-tau expression in both the cortex and hippocampus. Histological analysis revealed mild astrocyte activation (increased expression of glial fibrillary acidic protein (GFAP)) but not microglia activation (ionized calcium binding adaptor molecule 1 (iba-1) expression) and peripheral macrophage infiltration (CD45). Additionally, administration of cerebrolysin after rmTBI resulted in reduced astrocyte activation. These observations in rmTBI demonstrated that cerebrolysin treatment reduces phosphorylation of tau and astrocyte activation, attenuates brain pathology, and mitigates function deficits in TBI. Taken together, our observations suggest that cerebrolysin has potential therapeutic value in CTE.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Brain Regions Associated With Anhedonia in Healthy Adults : a PET Correlation Study (정상 성인에서 양전자방출단층촬영을 통해 관찰한 무쾌감증 관련 뇌 영역)

  • Jung, Young-Chul;Seok, Jeong-Ho;Chun, Ji-Won;Park, Hae-Jeong;Lee, Jong-Doo;Kim, Jae-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.438-444
    • /
    • 2005
  • Purpose: Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain legions which correlate with anhedonia in normal subjects. Materials and Methods: Using $^{18}F$-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Results: Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient =-0.440, p<0.05). The subjects physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middie frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. Conclusion: These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

The Infectivity of Recombinant Porcine Endogenous Retrovirus (PERV-A/C) Is Modulated by Membrane-Proximal Cytoplasmic Domain of PERV-C Envelope Tail (C형 돼지 내인성 레트로바이러스(PERV)의 C-말단 외막당단백질에 의한 재조합 PERV-A/C의 감염력 조절)

  • Kim, Sae-Ro-Mi;Park, Sang-Min;Lee, Kyu-Jun;Lee, Yong-Jin;Bae, Eun-Hye;Park, Sung-Han;Lim, Ji-Hyun;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • Xenotransplantation of pig organs is complicated by the existence of polytropic replication-competent porcine endogenous retroviruses (PERV) capable of infecting human cells. Two classes of infectious human-tropic replication-competent PERVs (PERV-A and PERV-B) and one class of ecotropic PERV-C are known. The potential for recombination between ecotropic PERV-C and human-tropic PERVs adds another level of infectious risk. A recombinant PERV-A/C (PERV-A14/220) virus is 500-fold more infectious than PERV-A. Two determinants of this high infectivity was identified; one was isoleucine-to-valine substitution at position 140 in RBD (receptor binding domain), and the other lies within the PRR (proline rich region) of the envelope protein. To examine whether the effects of the cytoplasmic tail of the PERV-C Env on fusogenesity also influences infectivity, we constructed a pseudotype retroviral vectors containing MoMLV core protein and PERV envelopes. Pseudotyping experiments with the PERV envelope glycoproteins indicated that recombinant PERV-A/C virus is 10-fold more infectious than PERV-A by lacZ staining. This result supports the suggestion that viral transduction of PERV-A/C is enhanced by a membrane-proximal cytoplasmic amphiphilic ${\alpha}$-helix in PERV-C Env tail.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

Activation Mechanism of Protein Kinase B by DNA-dependent Protein Kinase Involved in the DNA Repair System

  • Li, Yuwen;Piao, Longzhen;Yang, Keum-Jin;Shin, Sang-Hee;Shin, Eul-Soon;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Choi, Byung-Lyul;Lee, Hyun-Ji;Kim, Young-Rae;Hong, Jang-Hee;Hur, Gang-Min;Kim, Jeong-Lan;Cho, Jae-Youl;Seok, Jeong-Ho;Park, Jong-Sun
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • DNA-dependent protein kinase(DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be $2^{nd}$ upstream kinase for protein kinase B(PKB). In this report, we showed that Ser473 phosphorylation in the hydrophobic-motif of PKB is blocked in DNA-PK knockout mouse embryonic fibroblast cells(MEFs) following insulin stimulation, while there is no effect on Ser473 phosphorylation in DNA-PK wild type MEF cells. The observation is further confirmed in human glioblastoma cells expressing a mutant form of DNA-PK(M059J) and a wild-type of DNA-PK(M059K), indicating that DNA-PK is indeed important for PKB activation. Furthermore, the treatment of cells with doxorubicin, DNA-damage inducing agent, leads to PKB phosphorylation on Ser473 in control MEF cells while there is no response in DNA-PK knockout MEF cells. Together, these results proposed that DNA-PK has a potential role in insulin signaling as well as DNA-repair signaling pathway.