• Title/Summary/Keyword: binder content

Search Result 536, Processing Time 0.027 seconds

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets (반탄화 낙엽송 및 백합나무 칩으로 제조한 펠릿의 현미경 관찰과 펠릿의 내구성에 대한 바인더의 영향)

  • Park, Dae-Hak;Ahn, Byung Jun;Kim, Sang Tae;Lee, Jae-Won;Han, Gyu-Seong;Yang, In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • This study was conducted to investigate the effects of several variables on the durability of wood pellets fabricated with torrefied larch (LAR) and tulip tree (TUT) chips. Microscopic observation by scanning electron microscope-energy dispersive X-ray spectrometer was also performed to identify the surface of the wood pellets visually. In addition, torrefied-LAR and TUT pellets were fabricated with the addition of moisture, lignin, starch and protein as binders, and durabilities of the pellets were analyzed statistically. Durabilities of torrefied-LAR and TUT pellets were lower than one of non-torrefied-LAR and TUT pellets. Durabilities of both pellets fabricated with the wood chips, which were torrefied with $230^{\circ}C$ and 30 min, were the highest among all torrefaction conditions used in this study. From the microscopic observations, lignin was distributed broadly on the surface of non-torrefied wood pellets, whereas congregated partially on the surface of torrefied wood pellets. Durability of LAR pellets increased with the addition of moisture, but that of TUT pellets was reduced. Addition of binders contributed to increase the durability of LAR and TUT pellets. As a binder, lignin and protein were more effective than starch for improving the durability. In conclusion, mild torrefaction treatment, such as $230^{\circ}C$ and 30 min, might be an optimal condition to minimize the durability reduction of the LAR and TUT pellets. In addition, when torrefied woody materials with high and low specific gravities are used as a raw material for the production of durable wood pellets, it might be required to adjust moisture content and torrefaction conditions of woody materials, respectively.

Formulation of Liquid Coating Agent using Bamboo Charcoal and its Characteristics (대나무숯 액상코팅제의 제조 및 특성)

  • Park, Sang-Bum;Lee, Hee-Young;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.113-120
    • /
    • 2008
  • This study was performed to develop environmentally-friendly finishing materials for construction. In order to abate formaldehyde and ammonia in indoor air, liquid coating agents for indoor finishing were formulated with bamboo charcoal powder, cypress extracted water, and water-borne acrylic binder. Deodorization rate, far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were investigated. Deodorization rate was increased as cypress extracted water content increased. Deodorization rates of the coating agents were 60.0~98.6% on formaldehyde and 76.7~86.2% on ammonia. No differences on far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were found depending on different formulations. A 91.7% of far-infrared ray emission rate, 77 ea/cc of anions emission amount, and 99.4% of anti-bacterial effect were detected for all formulations. More effective application method of the coating agents revealed was a spray-gun. A $0.66kg/m^2$ of coating agent with a spray-gun and $0.94kg/m^2$ of coating agent with a brush was consumed each.

Prediction Model for Autogenous Shrinkage of High Strength Fly Ash Concrete (고강도 플라이 애쉬 콘크리트의 자기수축 예측 모델)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • Autogenous shrinkage, a significant contributor of early-age cracking of high strength concrete (HSC), must be avoided or minimized from an engineering point of view. Therefore, it is necessary to study how to reduce and to predict autogenous shrinkage with respect to tile control of early-age cracking. In this study, autogenous shrinkage of HSC with various water-binder ratio (W/B) ranging from 0.50 to 0.27 and fly ash content of 0, 10, 20, and 30% were investigated. Based on the test results, thereafter, a prediction model for autogenous shrinkage was proposed. Test results show that autogenous shrinkage increased and more rapidly developed with decreasing the W/B. Also, the higher fly ash contents, the smaller autogenous shrinkage. In particular, even if much autogenous shrinkage occurs at very early-ages, stress may not be developed while the stiffness of concrete is low. In order to consider the change of concrete stiffness, the transition time referred as stiffening threshold, was obtained by monitoring of ultrasonic pulse velocity evolution and considered in the autogenous shrinkage model. From a practical point of view, the proposed model can be effectively used to predict autogenous shrinkage and to estimate stress induced by autogenous shrinkage.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Retarder Contents (지연제 함량 변화에 따른 초속경 라텍스개질 콘크리트(VES-LMC)의 자기수축)

  • Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-194
    • /
    • 2009
  • The autogenous shrinkage of high-performance concrete, including very-early strength latex-modified concrete(VES-LMC), is generally bigger than that of normal strength concrete because of the low water/cement ratio, high binder contents, and usage of superplasticizer. Mix. proportion of VES-LMC has low water/cement ratio(0.38), high cement content(390kg/m$^3$), and aid of latex(15% of cement weight). Thus, these factors of VES-LMC, rapid water self-dissipation and evaporation within 3 hours of concrete placement would increase the autogenous shrinkage. The purpose of this study was to evaluate the early-age shrinkage, thermal deformation and autogenous shrinkages of VES-LMC with retarder contents(retarder solids-cement ratio, by weight) using to secure working time in field. The experimental results showed that retarder contents do not affect of the maximum hydration temperature. Early-age expansion of VES-LMC was mostly caused by thermal expansion and partly by autogenous expansion. The autogenous shrinkage is decreased by increasing the retarder contents within this study. On the other hand, the usage of retarder should be decided carefully considering the field conditions because an excessive usage of retarder can cause handful early-age expansion.

  • PDF

Dispersion Characteristics of Slurry and Preparation of Ceramic Paper (세라믹섬유지의 제조 및 슬러리 분산특성)

  • Yoo, Yoon-Jong;Kim, Joon-Soo;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1042-1047
    • /
    • 2002
  • The sedimentation characteristics of ceramic fiber were analyzed when viscosity of the slurry for ceramic paper formation was varied and zeta potential change and degree of dispersion with pH were studied as well. The proper viscosity of the slurry for dispersion of fibers was between 28 and 31 cps. Zeta potential of the slurry was sensitively changed with pH adjustment and showed maximum value of -35~-36 mV at ph 7.5~9.5, which indicated better dispersion of ceramic fiber as zeta potential of the slurry was increased. The sedimentation rate of ceramic fiber in a slurry was reported minimum at the maximum zeta potential. Water content of the casted paper should be lower than 83% after vacuum dehydration for retention of binder and lower than 62% after press rolling for wet paper handling. The obtained ceramic paper had tensile strength and basis weight, $102 kgf/cm^2$ and $98 g/m^2$, respectively.

Preparation and Characterization of Synthetic Hydroxyapatite/Polyacrylic Acid Homogeneous Composite (합성 Hydroxyapatite/Polyacrylic Acid 균질복합체의 제조 및 특성)

  • Lee, Suk-Kee;Lee, Hyung-Dong;Shin, Hyo-Soon;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1097-1102
    • /
    • 2002
  • Hydroxyapatite(HAp) powders were synthesized by wet-precipitation precess using $Ca(NO_3)_2{\cdot}4H_2O$ and $(NH_4)_2HPO_4$ and homogeneous composites of four type were prepared by mixing of synthetic HAp and Polyacrylic Acid(PAA). Ca/P ratio of synthetic HAps was determined using ICP analysis and the thermal property of HAp/PAA composites were investigated by TGA. Good crystalline HAp was obtained at pH 11 and $60{\circ}C$. The ratio of Ca/P in synthetic HAps was quantified in a range of 1.35~1.49, from which Ca-deficient HAp was obtained. The specific surface area of HAp/PAA composite increased with increasing the content of PAA and the weight loss of HAp/PAA composite at $800{\circ}C$ decreased in a range of 3.5~9.6% due to the degradation of PAA binder. From FT-IR analysis of HAp/PAA composite, it was confirmed that the ionic bond between ion of HAp and carboxyl group of PAA was formed.

A study on the fabrication of foamed glass by using refused coal ore and its physical properties (석탄 폐석을 이용한 발포유리의 제조 및 물리적 특성 연구)

  • Lim, Tae-Young;Ku, Hyun-Woo;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.266-273
    • /
    • 2011
  • Foamed glass was fabricated by using glass powder and foaming agents. For the glass powder, we used sodalime glass which's manufactured by using refused coal ore obtained as by-product from Dogye coal mine in Samcheok. And for the foaming agents, we used Calcium carbonate, Calcium phosphate and powder of shale type refused coal ore itself which has high content of carbon materials. We additionally used liquid binder for forming, and mixed together. And we formed rectangular shape and treated $800^{\circ}C$ for 20 min in an electrical furnace. The various kinds of foam glass samples were fabricated according to the kinds of foaming agents. The physical properties of samples, as specific gravity and compressive strength, were measured. Pore structure of each samples were investigated too. Foam glass with specific gravity of 0.4~0.7 and compressive strength of 30~72 kg/$cm^2$. Especially we get satisfying foam glass sample with low specific gravity of 0.47 and high compressive strength of 72 kg/$cm^2$ by the use of liquid calcium phosphate as foaming agent. It also had small and even shape of pore structure. Therefore, it is concluded that refused coal ore can be used for raw materials to manufacture secondary glass products such as a foamed glass panel for construction and industrial materials.